Max Planck Institute of Microstructure Physics, D-06120 Halle, Germany.
ACS Nano. 2010 Feb 23;4(2):1099-107. doi: 10.1021/nn9012934.
A nanofabrication technique combining pulsed laser deposition and a nanoporous anodic aluminum oxide membrane mask is being proposed to prepare various types of multiferroic nanocomposites, viz. periodically ordered CoFe(2)O(4) dots covered by a continuous Pb(Zr,Ti)O(3) layer, Pb(Zr,Ti)O(3) dots covered with CoFe(2)O(4), and Pb(Zr,Ti)O(3)/CoFe(2)O(4) bilayer heterostructure dots. By properly tuning the processing parameters, epitaxial nanodot-matrix composites can be obtained. For the composite consisting of CoFe(2)O(4) nanostructures covered by a Pb(Zr,Ti)O(3) film, an unexpected out-of-plane magnetic easy axis induced by the top Pb(Zr,Ti)O(3) layer and a uniform microdomain structure can be observed. The nanocomposites tested by piezoresponse force microscopy (PFM) exhibit strong piezoelectric signals, and they also display magnetoelectric coupling revealed by magnetic-field dependent capacitance measurement.
提出了一种结合脉冲激光沉积和纳米多孔氧化铝膜掩模的纳米制造技术,用于制备各种类型的多铁性纳米复合材料,即周期性有序的 CoFe(2)O(4)点覆盖连续的 Pb(Zr,Ti)O(3)层、CoFe(2)O(4)覆盖的 Pb(Zr,Ti)O(3)点以及 Pb(Zr,Ti)O(3)/CoFe(2)O(4)双层异质结构点。通过适当调整处理参数,可以获得外延纳米点-基体复合材料。对于由 CoFe(2)O(4)纳米结构覆盖的 Pb(Zr,Ti)O(3)薄膜组成的复合材料,可以观察到由顶部 Pb(Zr,Ti)O(3)层引起的出人意料的面外磁易轴和均匀的微畴结构。通过压电力显微镜 (PFM) 测试的纳米复合材料表现出强的压电信号,并且它们还通过磁场相关电容测量显示出磁电耦合。