Institut National de la Santé et de la Recherche Médicale U650 Brest, France.
Int J Radiat Oncol Biol Phys. 2010 May 1;77(1):301-8. doi: 10.1016/j.ijrobp.2009.08.018. Epub 2010 Jan 29.
Accurate contouring of positron emission tomography (PET) functional volumes is now considered crucial in image-guided radiotherapy and other oncology applications because the use of functional imaging allows for biological target definition. In addition, the definition of variable uptake regions within the tumor itself may facilitate dose painting for dosimetry optimization.
Current state-of-the-art algorithms for functional volume segmentation use adaptive thresholding. We developed an approach called fuzzy locally adaptive Bayesian (FLAB), validated on homogeneous objects, and then improved it by allowing the use of up to three tumor classes for the delineation of inhomogeneous tumors (3-FLAB). Simulated and real tumors with histology data containing homogeneous and heterogeneous activity distributions were used to assess the algorithm's accuracy.
The new 3-FLAB algorithm is able to extract the overall tumor from the background tissues and delineate variable uptake regions within the tumors, with higher accuracy and robustness compared with adaptive threshold (T(bckg)) and fuzzy C-means (FCM). 3-FLAB performed with a mean classification error of less than 9% +/- 8% on the simulated tumors, whereas binary-only implementation led to errors of 15% +/- 11%. T(bckg) and FCM led to mean errors of 20% +/- 12% and 17% +/- 14%, respectively. 3-FLAB also led to more robust estimation of the maximum diameters of tumors with histology measurements, with <6% standard deviation, whereas binary FLAB, T(bckg) and FCM lead to 10%, 12%, and 13%, respectively.
These encouraging results warrant further investigation in future studies that will investigate the impact of 3-FLAB in radiotherapy treatment planning, diagnosis, and therapy response evaluation.
正电子发射断层扫描(PET)功能体积的精确勾画现在被认为是图像引导放疗和其他肿瘤学应用中的关键,因为功能成像的使用允许进行生物靶区定义。此外,肿瘤内可变摄取区域的定义也可能有助于剂量绘制以实现剂量优化。
目前用于功能体积分割的最先进算法使用自适应阈值。我们开发了一种称为模糊局部自适应贝叶斯(FLAB)的方法,在均匀物体上进行了验证,然后通过允许使用多达三种肿瘤类别来对不均匀肿瘤进行勾画(3-FLAB)对其进行了改进。使用具有包含均匀和异质活性分布的组织学数据的模拟和真实肿瘤来评估算法的准确性。
新的 3-FLAB 算法能够从背景组织中提取整个肿瘤,并描绘肿瘤内的可变摄取区域,与自适应阈值(T(bckg))和模糊 C 均值(FCM)相比,具有更高的准确性和鲁棒性。3-FLAB 在模拟肿瘤上的平均分类误差小于 9% +/- 8%,而二进制仅实现导致误差为 15% +/- 11%。T(bckg)和 FCM 分别导致平均误差为 20% +/- 12%和 17% +/- 14%。3-FLAB 还导致与组织学测量的肿瘤最大直径的更稳健估计,标准偏差小于 6%,而二进制 FLAB、T(bckg)和 FCM 分别导致 10%、12%和 13%。
这些令人鼓舞的结果证明在未来的研究中进一步研究 3-FLAB 在放射治疗计划、诊断和治疗反应评估中的影响是合理的。