Suppr超能文献

用于PET中体积测定和定量分析的模糊隐马尔可夫链分割法

Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET.

作者信息

Hatt M, Lamare F, Boussion N, Turzo A, Collet C, Salzenstein F, Roux C, Jarritt P, Carson K, Cheze-Le Rest C, Visvikis D

机构信息

INSERM U650, Laboratoire du Traitement de l'Information Médicale (LaTIM), CHU Morvan, Bat 2bis (I3S), 5 avenue Foch, Brest, 29609, France.

出版信息

Phys Med Biol. 2007 Jun 21;52(12):3467-91. doi: 10.1088/0031-9155/52/12/010. Epub 2007 May 18.

Abstract

Accurate volume of interest (VOI) estimation in PET is crucial in different oncology applications such as response to therapy evaluation and radiotherapy treatment planning. The objective of our study was to evaluate the performance of the proposed algorithm for automatic lesion volume delineation; namely the fuzzy hidden Markov chains (FHMC), with that of current state of the art in clinical practice threshold based techniques. As the classical hidden Markov chain (HMC) algorithm, FHMC takes into account noise, voxel intensity and spatial correlation, in order to classify a voxel as background or functional VOI. However the novelty of the fuzzy model consists of the inclusion of an estimation of imprecision, which should subsequently lead to a better modelling of the 'fuzzy' nature of the object of interest boundaries in emission tomography data. The performance of the algorithms has been assessed on both simulated and acquired datasets of the IEC phantom, covering a large range of spherical lesion sizes (from 10 to 37 mm), contrast ratios (4:1 and 8:1) and image noise levels. Both lesion activity recovery and VOI determination tasks were assessed in reconstructed images using two different voxel sizes (8 mm3 and 64 mm3). In order to account for both the functional volume location and its size, the concept of % classification errors was introduced in the evaluation of volume segmentation using the simulated datasets. Results reveal that FHMC performs substantially better than the threshold based methodology for functional volume determination or activity concentration recovery considering a contrast ratio of 4:1 and lesion sizes of <28 mm. Furthermore differences between classification and volume estimation errors evaluated were smaller for the segmented volumes provided by the FHMC algorithm. Finally, the performance of the automatic algorithms was less susceptible to image noise levels in comparison to the threshold based techniques. The analysis of both simulated and acquired datasets led to similar results and conclusions as far as the performance of segmentation algorithms under evaluation is concerned.

摘要

在正电子发射断层扫描(PET)中,准确估计感兴趣体积(VOI)在不同的肿瘤学应用中至关重要,如治疗反应评估和放射治疗计划。我们研究的目的是评估所提出的自动病变体积勾勒算法,即模糊隐马尔可夫链(FHMC)与临床实践中基于阈值的现有技术的性能。作为经典的隐马尔可夫链(HMC)算法,FHMC考虑了噪声、体素强度和空间相关性,以便将体素分类为背景或功能VOI。然而,模糊模型的新颖之处在于包含了不精确性的估计,这随后应能更好地对发射断层扫描数据中感兴趣对象边界的“模糊”性质进行建模。已在国际电工委员会(IEC)体模的模拟数据集和采集数据集中评估了算法的性能,这些数据集涵盖了大范围的球形病变大小(从10到37毫米)、对比度(4:1和8:1)和图像噪声水平。在使用两种不同体素大小(8立方毫米和64立方毫米)重建的图像中评估了病变活性恢复和VOI确定任务。为了兼顾功能体积的位置及其大小,在使用模拟数据集评估体积分割时引入了%分类误差的概念。结果表明,考虑到4:1的对比度和小于28毫米的病变大小,在功能体积确定或活性浓度恢复方面,FHMC的性能明显优于基于阈值的方法。此外,对于FHMC算法提供的分割体积,评估的分类误差和体积估计误差之间的差异较小。最后,与基于阈值的技术相比,自动算法的性能对图像噪声水平的敏感度较低。就所评估的分割算法的性能而言,对模拟数据集和采集数据集的分析得出了相似的结果和结论。

相似文献

1
Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET.
Phys Med Biol. 2007 Jun 21;52(12):3467-91. doi: 10.1088/0031-9155/52/12/010. Epub 2007 May 18.
2
A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET.
IEEE Trans Med Imaging. 2009 Jun;28(6):881-93. doi: 10.1109/TMI.2008.2012036. Epub 2009 Jan 13.
3
Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications.
Int J Radiat Oncol Biol Phys. 2010 May 1;77(1):301-8. doi: 10.1016/j.ijrobp.2009.08.018. Epub 2010 Jan 29.
5
Disease quantification on PET/CT images without explicit object delineation.
Med Image Anal. 2019 Jan;51:169-183. doi: 10.1016/j.media.2018.11.002. Epub 2018 Nov 10.
6
Subcentimeter tumor lesion delineation for high-resolution 18F-FDG PET images: optimizing correction for partial-volume effects.
J Nucl Med Technol. 2013 Jun;41(2):85-91. doi: 10.2967/jnmt.112.117234. Epub 2013 May 8.
8
Contourlet-based active contour model for PET image segmentation.
Med Phys. 2013 Aug;40(8):082507. doi: 10.1118/1.4816296.

引用本文的文献

2
From coarse to fine: a deep 3D probability volume contours framework for tumour segmentation and dose painting in PET images.
Front Radiol. 2023 Sep 5;3:1225215. doi: 10.3389/fradi.2023.1225215. eCollection 2023.
4
A Bayesian approach to tissue-fraction estimation for oncological PET segmentation.
Phys Med Biol. 2021 Jun 14;66(12). doi: 10.1088/1361-6560/ac01f4.
5
Spatial and quantitative mapping of glycolysis and hypoxia in glioblastoma as a predictor of radiotherapy response and sites of relapse.
Eur J Nucl Med Mol Imaging. 2020 Jun;47(6):1476-1485. doi: 10.1007/s00259-020-04706-0. Epub 2020 Feb 5.
7
Adaptive region-growing with maximum curvature strategy for tumor segmentation in F-FDG PET.
Phys Med Biol. 2017 Jul 7;62(13):5383-5402. doi: 10.1088/1361-6560/aa6e20. Epub 2017 Jun 12.
9
Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures.
Br J Radiol. 2017 Feb;90(1070):20160665. doi: 10.1259/bjr.20160665. Epub 2016 Dec 12.
10
Impact of consensus contours from multiple PET segmentation methods on the accuracy of functional volume delineation.
Eur J Nucl Med Mol Imaging. 2016 May;43(5):911-924. doi: 10.1007/s00259-015-3239-7. Epub 2015 Nov 14.

本文引用的文献

1
Estimation of generalized mixtures and its application in image segmentation.
IEEE Trans Image Process. 1997;6(10):1364-75. doi: 10.1109/83.624951.
2
A new algorithm for N-dimensional Hilbert scanning.
IEEE Trans Image Process. 1999;8(7):964-73. doi: 10.1109/83.772242.
3
The role of PET/CT scanning in radiotherapy planning.
Br J Radiol. 2006 Sep;79 Spec No 1:S27-35. doi: 10.1259/bjr/35628509.
4
Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE.
Phys Med Biol. 2006 Feb 21;51(4):943-62. doi: 10.1088/0031-9155/51/4/013. Epub 2006 Feb 1.
6
Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial.
Eur J Nucl Med Mol Imaging. 2005 Mar;32(3):294-301. doi: 10.1007/s00259-004-1566-1. Epub 2004 Oct 15.
8
Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding.
Cancer. 1997 Dec 15;80(12 Suppl):2505-9. doi: 10.1002/(sici)1097-0142(19971215)80:12+<2505::aid-cncr24>3.3.co;2-b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验