Suppr超能文献

PostMod:具有间接关系的激酶特异性磷酸化位点的基于序列的预测。

PostMod: sequence based prediction of kinase-specific phosphorylation sites with indirect relationship.

机构信息

Department of Bio and Brain Engineering, KAIST, Daejeon 305-701, S. Korea.

出版信息

BMC Bioinformatics. 2010 Jan 18;11 Suppl 1(Suppl 1):S10. doi: 10.1186/1471-2105-11-S1-S10.

Abstract

BACKGROUND

Post-translational modifications (PTMs) have a key role in regulating cell functions. Consequently, identification of PTM sites has a significant impact on understanding protein function and revealing cellular signal transductions. Especially, phosphorylation is a ubiquitous process with a large portion of proteins undergoing this modification. Experimental methods to identify phosphorylation sites are labor-intensive and of high-cost. With the exponentially growing protein sequence data, development of computational approaches to predict phosphorylation sites is highly desirable.

RESULTS

Here, we present a simple and effective method to recognize phosphorylation sites by combining sequence patterns and evolutionary information and by applying a novel noise-reducing algorithm. We suggested that considering long-range region surrounding a phosphorylation site is important for recognizing phosphorylation peptides. Also, from compared results to AutoMotif in 36 different kinase families, new method outperforms AutoMotif. The mean accuracy, precision, and recall of our method are 0.93, 0.67, and 0.40, respectively, whereas those of AutoMotif with a polynomial kernel are 0.91, 0.47, and 0.17, respectively. Also our method shows better or comparable performance in four main kinase groups, CDK, CK2, PKA, and PKC compared to six existing predictors.

CONCLUSION

Our method is remarkable in that it is powerful and intuitive approach without need of a sophisticated training algorithm. Moreover, our method is generally applicable to other types of PTMs.

摘要

背景

翻译后修饰(PTMs)在调节细胞功能方面起着关键作用。因此,鉴定翻译后修饰位点对理解蛋白质功能和揭示细胞信号转导具有重要意义。特别是,磷酸化是一种普遍存在的过程,很大一部分蛋白质都经历了这种修饰。鉴定磷酸化位点的实验方法既费力又昂贵。随着蛋白质序列数据的指数级增长,开发用于预测磷酸化位点的计算方法是非常需要的。

结果

在这里,我们提出了一种简单而有效的方法,通过结合序列模式和进化信息,并应用一种新颖的降噪算法来识别磷酸化位点。我们认为,考虑磷酸化位点周围的远程区域对于识别磷酸化肽很重要。此外,与 36 种不同激酶家族中的 AutoMotif 进行比较结果表明,新方法优于 AutoMotif。我们的方法的平均准确性、精度和召回率分别为 0.93、0.67 和 0.40,而具有多项式核的 AutoMotif 的分别为 0.91、0.47 和 0.17。此外,与其他六个现有的预测器相比,我们的方法在四个主要的激酶组(CDK、CK2、PKA 和 PKC)中表现出更好或相当的性能。

结论

我们的方法是强大而直观的,不需要复杂的训练算法,这一点很突出。此外,我们的方法通常适用于其他类型的翻译后修饰。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7484/3009482/1a422eda2a3f/1471-2105-11-S1-S10-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验