Digiovanna Jack, Rattanatamrong Prapaporn, Zhao Ming, Mahmoudi Babak, Hermer Linda, Figueiredo Renato, Principe Jose C, Fortes Jose, Sanchez Justin C
Neuroprosthetics Control Group, ETH Zurich Switzerland.
Front Neuroeng. 2010 Jan 20;2:17. doi: 10.3389/neuro.16.017.2009. eCollection 2010.
A Cyber-Workstation (CW) to study in vivo, real-time interactions between computational models and large-scale brain subsystems during behavioral experiments has been designed and implemented. The design philosophy seeks to directly link the in vivo neurophysiology laboratory with scalable computing resources to enable more sophisticated computational neuroscience investigation. The architecture designed here allows scientists to develop new models and integrate them with existing models (e.g. recursive least-squares regressor) by specifying appropriate connections in a block-diagram. Then, adaptive middleware transparently implements these user specifications using the full power of remote grid-computing hardware. In effect, the middleware deploys an on-demand and flexible neuroscience research test-bed to provide the neurophysiology laboratory extensive computational power from an outside source. The CW consolidates distributed software and hardware resources to support time-critical and/or resource-demanding computing during data collection from behaving animals. This power and flexibility is important as experimental and theoretical neuroscience evolves based on insights gained from data-intensive experiments, new technologies and engineering methodologies. This paper describes briefly the computational infrastructure and its most relevant components. Each component is discussed within a systematic process of setting up an in vivo, neuroscience experiment. Furthermore, a co-adaptive brain machine interface is implemented on the CW to illustrate how this integrated computational and experimental platform can be used to study systems neurophysiology and learning in a behavior task. We believe this implementation is also the first remote execution and adaptation of a brain-machine interface.
设计并实现了一种用于在行为实验期间研究计算模型与大规模脑子系统之间体内实时相互作用的网络工作站(CW)。其设计理念旨在将体内神经生理学实验室与可扩展的计算资源直接连接起来,以开展更复杂的计算神经科学研究。此处设计的架构允许科学家通过在框图中指定适当的连接来开发新模型,并将其与现有模型(例如递归最小二乘回归器)集成。然后,自适应中间件利用远程网格计算硬件的全部功能透明地实现这些用户规范。实际上,中间件部署了一个按需且灵活的神经科学研究测试平台,以便从外部源为神经生理学实验室提供强大的计算能力。CW整合了分布式软件和硬件资源,以在从行为动物收集数据期间支持对时间要求严格和/或资源需求大的计算。随着实验和理论神经科学基于从数据密集型实验、新技术和工程方法中获得的见解不断发展,这种能力和灵活性至关重要。本文简要描述了计算基础设施及其最相关的组件。在建立体内神经科学实验的系统过程中对每个组件进行了讨论。此外,在CW上实现了一种协同自适应脑机接口,以说明这个集成的计算和实验平台如何用于研究行为任务中的系统神经生理学和学习。我们相信这种实现也是脑机接口的首次远程执行和自适应。