Division of Bioengineering, National University of Singapore, Singapore 117576.
IEEE Trans Image Process. 2010 Jun;19(6):1539-47. doi: 10.1109/TIP.2010.2042099. Epub 2010 Feb 2.
Atlas-driven morphometric analysis has received great attention for studying anatomical shape variation across clinical populations in neuroimaging research as it provides a local coordinate representation for understanding the family of anatomic observations. We present a procedure for generating atlas of subcortical and ventricular structures, including amygdala, hippocampus, caudate, putamen, globus pallidus, thalamus, and lateral ventricles, using the large deformation diffeomorphic metric atlas generation algorithm. The atlas was built based on manually labeled volumes of 41 subjects randomly selected from the database of Open Access Series of Imaging Studies (OASIS, 10 young adults, 10 middle-age adults, 10 healthy elders, and 11 patients with dementia). We show that the estimated atlas is representative of the population in terms of its metric distance to each individual subject in the population. In the application of detecting shape variations, using the estimated atlas may potentially increase statistical power in identifying group shape difference when comparing with using a single subject atlas. In shape-based classification, the metric distances between subjects and each of within-class estimated atlases construct a shape feature space, which allows for performing a variety of classification algorithms to distinguish anatomies.
图谱驱动的形态计量分析在神经影像学研究中受到了广泛关注,因为它为理解解剖学观察的整体提供了局部坐标表示。我们提出了一种使用大变形可微分度量图谱生成算法生成包括杏仁核、海马体、尾状核、壳核、苍白球、丘脑和侧脑室在内的皮质下和脑室结构图谱的方法。图谱是基于从开放获取成像研究数据库(OASIS,10 名年轻人、10 名中年成年人、10 名健康老年人和 11 名痴呆症患者)中随机选择的 41 个手动标记的体积构建的。我们表明,就其与人群中每个个体的度量距离而言,估计的图谱具有代表性。在检测形状变化的应用中,与使用单个主体图谱相比,使用估计的图谱可能会在识别组形状差异方面提高统计能力。在基于形状的分类中,主体之间的度量距离和每个类内估计的图谱之间的度量距离构建了一个形状特征空间,允许使用各种分类算法来区分解剖结构。