Department of Biomedical Engineering, University of Southern California, Los Angeles, 90089, USA.
Bioinformatics. 2010 Mar 15;26(6):807-13. doi: 10.1093/bioinformatics/btq044. Epub 2010 Feb 4.
Three major problems confront the construction of a human genetic network from heterogeneous genomics data using kernel-based approaches: definition of a robust gold-standard negative set, large-scale learning and massive missing data values.
The proposed graph-based approach generates a robust GSN for the training process of genetic network construction. The RVM-based ensemble model that combines AdaBoost and reduced-feature yields improved performance on large-scale learning problems with massive missing values in comparison to Naïve Bayes.
Supplementary material is available at Bioinformatics online.
使用基于内核的方法从异构基因组学数据构建人类遗传网络时,面临三个主要问题:稳健的黄金标准负集的定义、大规模学习和大量缺失数据值。
所提出的基于图的方法为遗传网络构建的训练过程生成了一个稳健的 GSN。与朴素贝叶斯相比,基于 RVM 的集成模型(结合了 AdaBoost 和降维特征)在具有大量缺失值的大规模学习问题上具有更好的性能。
补充材料可在 Bioinformatics 在线获得。