Institute for Knowledge Discovery, BCI Lab, Graz University of Technology, Graz, Austria.
J Neurosci Methods. 2010 Apr 30;188(1):165-73. doi: 10.1016/j.jneumeth.2010.02.002. Epub 2010 Feb 11.
In a conventional brain-computer interface (BCI) system, users perform mental tasks that yield specific patterns of brain activity. A pattern recognition system determines which brain activity pattern a user is producing and thereby infers the user's mental task, allowing users to send messages or commands through brain activity alone. Unfortunately, despite extensive research to improve classification accuracy, BCIs almost always exhibit errors, which are sometimes so severe that effective communication is impossible. We recently introduced a new idea to improve accuracy, especially for users with poor performance. In an offline simulation of a "hybrid" BCI, subjects performed two mental tasks independently and then simultaneously. This hybrid BCI could use two different types of brain signals common in BCIs - event-related desynchronization (ERD) and steady-state evoked potentials (SSEPs). This study suggested that such a hybrid BCI is feasible. Here, we re-analyzed the data from our initial study. We explored eight different signal processing methods that aimed to improve classification and further assess both the causes and the extent of the benefits of the hybrid condition. Most analyses showed that the improved methods described here yielded a statistically significant improvement over our initial study. Some of these improvements could be relevant to conventional BCIs as well. Moreover, the number of illiterates could be reduced with the hybrid condition. Results are also discussed in terms of dual task interference and relevance to protocol design in hybrid BCIs.
在传统的脑机接口(BCI)系统中,用户执行特定的心理任务,产生特定的脑活动模式。模式识别系统确定用户正在产生哪种脑活动模式,从而推断出用户的心理任务,允许用户仅通过脑活动发送消息或命令。然而,尽管进行了广泛的研究以提高分类准确性,但 BCI 几乎总是存在误差,有时这些误差非常严重,以至于无法进行有效的通信。我们最近提出了一个新的想法来提高准确性,特别是对于表现不佳的用户。在“混合”BCI 的离线模拟中,受试者独立地执行两个心理任务,然后同时执行。这种混合 BCI 可以使用两种常见的 BCI 脑信号 - 事件相关去同步(ERD)和稳态诱发电位(SSEP)。这项研究表明,这种混合 BCI 是可行的。在这里,我们重新分析了我们最初研究的数据。我们探索了八种不同的信号处理方法,旨在提高分类,并进一步评估混合条件的原因和好处的程度。大多数分析表明,这里描述的改进方法相对于我们的初始研究有统计学上的显著改善。其中一些改进可能与传统 BCI 有关。此外,混合条件下可以减少文盲的数量。结果还讨论了双任务干扰以及对混合 BCI 中协议设计的相关性。