Suppr超能文献

矿化机制以及碱性磷酸酶在健康与疾病中的作用。

The mechanism of mineralization and the role of alkaline phosphatase in health and disease.

作者信息

Orimo Hideo

机构信息

Division of Medical and Biological Chemistry, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan.

出版信息

J Nippon Med Sch. 2010 Feb;77(1):4-12. doi: 10.1272/jnms.77.4.

Abstract

Biomineralization is the process by which hydroxyapatite is deposited in the extracellular matrix. Physiological mineralization occurs in hard tissues, whereas pathological calcification occurs in soft tissues. The first step of mineralization is the formation of hydroxyapatite crystals within matrix vesicles that bud from the surface membrane of hypertrophic chondrocytes, osteoblasts, and odontoblasts. This is followed by propagation of hydroxyapatite into the extracellular matrix and its deposition between collagen fibrils. Extracellular inorganic pyrophosphate, provided by NPP1 and ANKH, inhibits hydroxyapatite formation. Tissue-nonspecific alkaline phosphatase (TNAP) hydrolyzes pyrophosphate and provides inorganic phosphate to promote mineralization. Inorganic pyrophosphate, pyridoxal phosphate, and phosphoethanolamine are thought to be the physiologic substrates of TNAP. These accumulate in the event of TNAP deficiency, e.g., in cases of hypophosphatasia. The gene encoding TNAP is mapped to chromosome 1, consists of 12 exons, and possesses regulatory motifs in the 5'-untranslated region. Inhibition of TNAP enzymatic activity suppresses TNAP mRNA expression and mineralization in vitro. Hypophosphatasia is an inherited systemic bone disease characterized by hypomineralization of hard tissues. The phenotype of hypophosphatasia is varied. To date, more than 200 mutations in the TNAP gene have been reported. Knockout mice mimic the phenotypes of severe hypophosphatasia. Among the mutations in the TNAP gene, c.1559delT is frequent in the Japanese population. This frameshift mutation results in the expression of an abnormally long protein that is degraded in cells. DNA-based prenatal diagnosis using chorionic villus sampling has been developed, but requires thorough genetic counseling. Although hypophosphatasia is untreatable at present, the recent success of enzyme replacement therapy offers promise. The problems presented by impaired mineralization in age-related chronic diseases, such as pathologic calcification and decreasing physiological mineralization are growing in importance. Strategies for preventing pathologic calcification using TNAP and NPP1 are in development. A nutrigenomic approach, based on the relationship between TNAP gene polymorphism and bone mineral density, is also discussed.

摘要

生物矿化是羟基磷灰石沉积于细胞外基质的过程。生理性矿化发生在硬组织中,而病理性钙化发生在软组织中。矿化的第一步是在从肥大软骨细胞、成骨细胞和成牙本质细胞的表面膜上芽生的基质小泡内形成羟基磷灰石晶体。随后是羟基磷灰石向细胞外基质的扩展及其在胶原纤维之间的沉积。由NPP1和ANKH提供的细胞外无机焦磷酸盐抑制羟基磷灰石的形成。组织非特异性碱性磷酸酶(TNAP)水解焦磷酸盐并提供无机磷酸盐以促进矿化。无机焦磷酸盐、磷酸吡哆醛和磷酸乙醇胺被认为是TNAP的生理底物。在TNAP缺乏的情况下,例如在低磷酸酯酶血症病例中,这些物质会积累。编码TNAP的基因定位于1号染色体,由12个外显子组成,并在5'非翻译区具有调控基序。抑制TNAP酶活性可抑制TNAP mRNA表达和体外矿化。低磷酸酯酶血症是一种遗传性全身性骨病,其特征是硬组织矿化不足。低磷酸酯酶血症的表型多种多样。迄今为止,已报道TNAP基因中有200多个突变。基因敲除小鼠模拟严重低磷酸酯酶血症的表型。在TNAP基因的突变中,c.1559delT在日本人群中很常见。这种移码突变导致异常长的蛋白质表达,该蛋白质在细胞中被降解。已经开发了使用绒毛取样的基于DNA的产前诊断方法,但需要全面的遗传咨询。尽管目前低磷酸酯酶血症无法治疗,但最近酶替代疗法的成功带来了希望。与年龄相关的慢性疾病中矿化受损所带来的问题,如病理性钙化和生理性矿化减少,正变得越来越重要。使用TNAP和NPP1预防病理性钙化的策略正在研发中。还讨论了基于TNAP基因多态性与骨密度之间关系的营养基因组学方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验