Suppr超能文献

味觉加工和决策中的神经状态随机转换。

Stochastic transitions between neural states in taste processing and decision-making.

机构信息

Department of Biology, Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02453, USA.

出版信息

J Neurosci. 2010 Feb 17;30(7):2559-70. doi: 10.1523/JNEUROSCI.3047-09.2010.

Abstract

Noise, which is ubiquitous in the nervous system, causes trial-to-trial variability in the neural responses to stimuli. This neural variability is in turn a likely source of behavioral variability. Using Hidden Markov modeling, a method of analysis that can make use of such trial-to-trial response variability, we have uncovered sequences of discrete states of neural activity in gustatory cortex during taste processing. Here, we advance our understanding of these patterns in two ways. First, we reproduce the experimental findings in a formal model, describing a network that evinces sharp transitions between discrete states that are deterministically stable given sufficient noise in the network; as in the empirical data, the transitions occur at variable times across trials, but the stimulus-specific sequence is itself reliable. Second, we demonstrate that such noise-induced transitions between discrete states can be computationally advantageous in a reduced, decision-making network. The reduced network produces binary outputs, which represent classification of ingested substances as palatable or nonpalatable, and the corresponding behavioral responses of "spit" or "swallow". We evaluate the performance of the network by measuring how reliably its outputs follow small biases in the strengths of its inputs. We compare two modes of operation: deterministic integration ("ramping") versus stochastic decision-making ("jumping"), the latter of which relies on state-to-state transitions. We find that the stochastic mode of operation can be optimal under typical levels of internal noise and that, within this mode, addition of random noise to each input can improve optimal performance when decisions must be made in limited time.

摘要

噪声在神经系统中无处不在,会导致对刺激的神经反应在试验间发生可变性。这种神经可变性反过来又是行为可变性的一个可能来源。我们使用隐马尔可夫建模(一种可以利用这种试验间反应可变性的分析方法),在味觉皮层中发现了味觉处理过程中离散神经活动状态的序列。在这里,我们通过两种方式推进对这些模式的理解。首先,我们在一个形式模型中重现了实验结果,该模型描述了一个网络,该网络在网络中有足够噪声的情况下表现出离散状态之间的急剧转变,这些转变是确定性稳定的;与经验数据一样,转变在试验间的不同时间发生,但刺激特异性序列本身是可靠的。其次,我们证明,在一个简化的决策网络中,这种由噪声引起的离散状态之间的转变可以在计算上具有优势。简化网络产生二进制输出,这些输出代表摄入物质是可口还是不可口的分类,以及相应的“吐”或“吞”行为反应。我们通过测量其输出如何可靠地遵循其输入强度的小偏差来评估网络的性能。我们比较了两种操作模式:确定性积分(“斜坡”)与随机决策(“跳跃”),后者依赖于状态到状态的转变。我们发现,在典型的内部噪声水平下,随机操作模式可能是最优的,并且在这种模式下,当必须在有限的时间内做出决策时,向每个输入添加随机噪声可以提高最佳性能。

相似文献

3
How to find decision makers in neural networks.如何在神经网络中找到决策制定者。
Biol Cybern. 2005 Dec;93(6):447-62. doi: 10.1007/s00422-005-0022-z. Epub 2005 Nov 5.

引用本文的文献

4
9
Active Learning for Discrete Latent Variable Models.离散潜在变量模型的主动学习
Neural Comput. 2024 Feb 16;36(3):437-474. doi: 10.1162/neco_a_01646.

本文引用的文献

1
Decisions in changing conditions: the urgency-gating model.变化条件下的决策:紧急筛选模型。
J Neurosci. 2009 Sep 16;29(37):11560-71. doi: 10.1523/JNEUROSCI.1844-09.2009.
4
Stochastic dynamics as a principle of brain function.随机动力学作为大脑功能的一项原理。
Prog Neurobiol. 2009 May;88(1):1-16. doi: 10.1016/j.pneurobio.2009.01.006. Epub 2009 Jan 30.
9
The role of fluctuations in perception.感知波动的作用。
Trends Neurosci. 2008 Nov;31(11):591-8. doi: 10.1016/j.tins.2008.08.007. Epub 2008 Sep 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验