Suppr超能文献

生物医学中的碳纳米管:体外和体内检测、成像与药物递送

Carbon Nanotubes in Biology and Medicine: In vitro and in vivo Detection, Imaging and Drug Delivery.

作者信息

Liu Zhuang, Tabakman Scott, Welsher Kevin, Dai Hongjie

机构信息

Department of Chemistry, Stanford University, CA 94305, USA.

出版信息

Nano Res. 2009 Feb 1;2(2):85-120. doi: 10.1007/s12274-009-9009-8.

Abstract

Carbon nanotubes exhibit many unique intrinsic physical and chemical properties and have been intensively explored for biological and biomedical applications in the past few years. In this comprehensive review, we summarize the main results from our and other groups in this field and clarify that surface functionalization is critical to the behavior of carbon nanotubes in biological systems. Ultrasensitive detection of biological species with carbon nanotubes can be realized after surface passivation to inhibit the non-specific binding of biomolecules on the hydrophobic nanotube surface. Electrical nanosensors based on nanotubes provide a label-free approach to biological detection. Surface-enhanced Raman spectroscopy of carbon nanotubes opens up a method of protein microarray with detection sensitivity down to 1 fmol/L. In vitro and in vivo toxicity studies reveal that highly water soluble and serum stable nanotubes are biocompatible, nontoxic, and potentially useful for biomedical applications. In vivo biodistributions vary with the functionalization and possibly also size of nanotubes, with a tendency to accumulate in the reticuloendothelial system (RES), including the liver and spleen, after intravenous administration. If well functionalized, nanotubes may be excreted mainly through the biliary pathway in feces. Carbon nanotube-based drug delivery has shown promise in various In vitro and in vivo experiments including delivery of small interfering RNA (siRNA), paclitaxel and doxorubicin. Moreover, single-walled carbon nanotubes with various interesting intrinsic optical properties have been used as novel photoluminescence, Raman, and photoacoustic contrast agents for imaging of cells and animals. Further multidisciplinary explorations in this field may bring new opportunities in the realm of biomedicine.

摘要

碳纳米管具有许多独特的固有物理和化学性质,在过去几年中已被广泛探索用于生物和生物医学应用。在这篇综述中,我们总结了我们团队和其他团队在该领域的主要研究成果,并阐明表面功能化对于碳纳米管在生物系统中的行为至关重要。对碳纳米管进行表面钝化以抑制生物分子在疏水纳米管表面的非特异性结合后,可实现对生物物种的超灵敏检测。基于纳米管的电纳米传感器为生物检测提供了一种无标记方法。碳纳米管的表面增强拉曼光谱开辟了一种蛋白质微阵列检测方法,检测灵敏度低至1 fmol/L。体外和体内毒性研究表明,高度水溶性和血清稳定性的纳米管具有生物相容性、无毒,并且在生物医学应用中具有潜在用途。体内生物分布随纳米管的功能化以及可能的尺寸而变化,静脉注射后有在包括肝脏和脾脏在内的网状内皮系统(RES)中积累的趋势。如果功能化良好,纳米管可能主要通过胆汁途径随粪便排出。基于碳纳米管的药物递送在包括小干扰RNA(siRNA)、紫杉醇和阿霉素递送在内的各种体外和体内实验中都显示出了前景。此外,具有各种有趣固有光学性质的单壁碳纳米管已被用作新型光致发光、拉曼和光声造影剂,用于细胞和动物成像。该领域的进一步多学科探索可能会在生物医学领域带来新的机遇。

相似文献

2
The Power of Carbon Nanotubes on Sensitive Drug Determination Methods.
Crit Rev Anal Chem. 2023;53(2):374-383. doi: 10.1080/10408347.2021.1958296. Epub 2021 Aug 1.
3
Preparation of carbon nanotube bioconjugates for biomedical applications.
Nat Protoc. 2009;4(9):1372-82. doi: 10.1038/nprot.2009.146. Epub 2009 Sep 3.
4
Applications of carbon nanotubes in biomedical studies.
Methods Mol Biol. 2011;726:223-41. doi: 10.1007/978-1-61779-052-2_15.
6
Carbon nanotubes for biomedical imaging: the recent advances.
Adv Drug Deliv Rev. 2013 Dec;65(15):1951-63. doi: 10.1016/j.addr.2013.10.002. Epub 2013 Oct 30.
7
Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy.
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1410-5. doi: 10.1073/pnas.0707654105. Epub 2008 Jan 29.
8
Carbon nanotubes from synthesis to in vivo biomedical applications.
Int J Pharm. 2016 Mar 30;501(1-2):278-99. doi: 10.1016/j.ijpharm.2016.01.064. Epub 2016 Jan 28.
9
Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.
Biotechnol J. 2015 Mar;10(3):447-59. doi: 10.1002/biot.201400168. Epub 2015 Feb 13.
10
Carbon nanotubes for delivery of small molecule drugs.
Adv Drug Deliv Rev. 2013 Dec;65(15):1964-2015. doi: 10.1016/j.addr.2013.08.005. Epub 2013 Aug 14.

引用本文的文献

1
Carbon Nanobelts: Brief History and Perspective.
Precis Chem. 2023 Oct 12;1(9):516-523. doi: 10.1021/prechem.3c00083. eCollection 2023 Nov 27.
3
Current Trends and Advances in Nanoplatforms-Based Imaging for Cancer Diagnosis.
Indian J Microbiol. 2025 Mar;65(1):137-176. doi: 10.1007/s12088-024-01373-9. Epub 2024 Aug 9.
4
Selective Toxicity Mechanisms of Carbon Nanotubes and Near-Infrared Light Wave on the Colon and Hepatoma Cancer Cells.
Iran J Pharm Res. 2024 Dec 23;23(1):e157296. doi: 10.5812/ijpr-157296. eCollection 2024 Jan-Dec.
5
Next-Generation Metal-Organic Frameworks: Shaping the Future of Steroid Compound Management.
ACS Omega. 2025 Mar 3;10(10):9890-9902. doi: 10.1021/acsomega.4c11671. eCollection 2025 Mar 18.
6
Spherical Amides with Symmetry: Improved Synthetic Approach and Structural/Optical Analysis.
Molecules. 2025 Feb 26;30(5):1074. doi: 10.3390/molecules30051074.
7
Holistic Investigation of Graphene Quantum Dot Endocytosis.
Small. 2025 Mar;21(9):e2406095. doi: 10.1002/smll.202406095. Epub 2025 Feb 2.
8
Advancing brain immunotherapy through functional nanomaterials.
Drug Deliv Transl Res. 2025 Jan 9. doi: 10.1007/s13346-024-01778-5.
9
Single-Walled Carbon Nanotubes as Optical Transducers for Nanobiosensors In Vivo.
ACS Nano. 2024 Dec 31;18(52):35164-35181. doi: 10.1021/acsnano.4c13076. Epub 2024 Dec 18.
10
Covalent Attachment of Horseradish Peroxidase to Single-Walled Carbon Nanotubes for Hydrogen Peroxide Detection.
Adv Funct Mater. 2024 Aug 8;34(32). doi: 10.1002/adfm.202316028. Epub 2024 May 16.

本文引用的文献

1
Helical Crystallization of Proteins on Carbon Nanotubes: A First Step towards the Development of New Biosensors.
Angew Chem Int Ed Engl. 1999 Jul 12;38(13-14):1912-1915. doi: 10.1002/(SICI)1521-3773(19990712)38:13/14<1912::AID-ANIE1912>3.0.CO;2-2.
2
Cytotoxicity of single-walled carbon nanotubes suspended in various surfactants.
Nanotechnology. 2008 Jun 25;19(25):255702. doi: 10.1088/0957-4484/19/25/255702. Epub 2008 May 15.
3
4
A generally adoptable radiotracing method for tracking carbon nanotubes in animals.
Nanotechnology. 2008 Feb 20;19(7):075101. doi: 10.1088/0957-4484/19/7/075101. Epub 2008 Jan 29.
5
Nano-Graphene Oxide for Cellular Imaging and Drug Delivery.
Nano Res. 2008;1(3):203-212. doi: 10.1007/s12274-008-8021-8.
7
Protein microarrays with carbon nanotubes as multicolor Raman labels.
Nat Biotechnol. 2008 Nov;26(11):1285-92. doi: 10.1038/nbt.1501. Epub 2008 Oct 26.
8
Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules.
Adv Mater. 2007 Oct 19;19(20):3214-3228. doi: 10.1002/adma.200700665.
9
Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes.
J Am Chem Soc. 2008 Oct 15;130(41):13540-1. doi: 10.1021/ja806242t. Epub 2008 Sep 20.
10
Carbon nanotubes as photoacoustic molecular imaging agents in living mice.
Nat Nanotechnol. 2008 Sep;3(9):557-62. doi: 10.1038/nnano.2008.231. Epub 2008 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验