Department of Radiation Oncology, Washington University School of Medicine, 4921 Parkview Place, Campus Box 8224, St. Louis, Missouri 63110, USA.
Med Phys. 2010 Jan;37(1):146-53. doi: 10.1118/1.3271338.
The low effective atomic number, reusability, and other computed radiography-related advantages make europium doped potassium chloride (KCl : Eu2+) a promising dosimetry material. The purpose of this study is to model KCl : Eu2+ point dosimeters with a Monte Carlo (MC) method and, using this model, to investigate the dose responses of two-dimensional (2D) KCl : Eu2+ storage phosphor films (SPFs).
KCl : Eu2+ point dosimeters were irradiated using a 6 MV beam at four depths (5-20 cm) for each of five square field sizes (5 x 5-25 x 25 cm2). The dose measured by KCl : Eu2+ was compared to that measured by an ionization chamber to obtain the magnitude of energy dependent dose measurement artifact. The measurements were simulated using DOSXYZnrc with phase space files generated by BEAMnrcMP. Simulations were also performed for KCl : Eu2+ films with thicknesses ranging from 1 microm to 1 mm. The work function of the prototype KCl : Eu2+ material was determined by comparing the sensitivity of a 150 microm thick KCl : Eu2+ film to a commercial BaFBr0.85 I0.15 : Eu(2+)-based SPF with a known work function. The work function was then used to estimate the sensitivity of a 1 microm thick KCl : Eu2+ film.
The simulated dose responses of prototype KCl : Eu2+ point dosimeters agree well with measurement data acquired by irradiating the dosimeters in the 6 MV beam with varying field size and depth. Furthermore, simulations with films demonstrate that an ultrathin KCl : Eu2+ film with thickness of the order of 1 microm would have nearly water-equivalent dose response. The simulation results can be understood using classic cavity theories. Finally, preliminary experiments and theoretical calculations show that ultrathin KCl : Eu2+ film could provide excellent signal in a 1 cGy dose-to-water irradiation.
In conclusion, the authors demonstrate that KCl : Eu(2+)-based dosimeters can be accurately modeled by a MC method and that 2D KCl : Eu2+ films of the order of 1 microm thick would have minimal energy dependence. The data support the future research and development of a KCl : Eu2+ storage phosphor-based system for quantitative, high-resolution multidimensional radiation therapy dosimetry.
低有效原子序数、可重复使用性以及其他与计算机射线照相相关的优势,使掺铕氯化钾(KCl:Eu2+)成为一种很有前途的剂量测定材料。本研究的目的是用蒙特卡罗(MC)方法对 KCl:Eu2+点剂量计进行建模,并利用该模型研究二维(2D)KCl:Eu2+存储磷光体薄膜(SPF)的剂量响应。
使用 6 MV 束在五个正方形射野大小(5 x 5-25 x 25 cm2)的四个深度(5-20 cm)处对 KCl:Eu2+点剂量计进行照射。用 KCl:Eu2+测量的剂量与电离室测量的剂量进行比较,以获得能量依赖性剂量测量伪影的大小。用 DOSXYZnrc 模拟测量,使用 BEAMnrcMP 生成的相空间文件。还对厚度从 1 微米到 1 毫米的 KCl:Eu2+薄膜进行了模拟。通过比较 150 微米厚的 KCl:Eu2+薄膜与具有已知功函数的商用 BaFBr0.85 I0.15:Eu(2+)基 SPF 的灵敏度,确定了原型 KCl:Eu2+材料的功函数。然后,使用该功函数估计 1 微米厚的 KCl:Eu2+薄膜的灵敏度。
原型 KCl:Eu2+点剂量计的模拟剂量响应与在 6 MV 射束中用不同射野大小和深度照射剂量计获得的测量数据吻合良好。此外,薄膜的模拟表明,厚度约为 1 微米的超薄 KCl:Eu2+薄膜将具有几乎与水等效的剂量响应。模拟结果可以用经典的空腔理论来解释。最后,初步实验和理论计算表明,超薄 KCl:Eu2+薄膜在 1 cGy 水剂量照射下可以提供优异的信号。
总之,作者证明了 KCl:Eu(2+)基剂量计可以通过 MC 方法准确建模,并且厚度约为 1 微米的 2D KCl:Eu2+薄膜将具有最小的能量依赖性。这些数据支持未来对基于 KCl:Eu2+存储磷光体的系统进行定量、高分辨率多维放射治疗剂量测定的研究和开发。