Suppr超能文献

营养限制延长酵母寿命过程中的基因调控变化。

Gene regulatory changes in yeast during life extension by nutrient limitation.

机构信息

Department of Medicine and the Tulane Center for Aging, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.

出版信息

Exp Gerontol. 2010 Aug;45(7-8):621-31. doi: 10.1016/j.exger.2010.02.008. Epub 2010 Feb 21.

Abstract

Genetic analyses aimed at identification of the pathways and downstream effectors of calorie restriction (CR) in the yeast Saccharomyces cerevisiae suggest the importance of central metabolism for the extension of replicative life span by CR. However, the limited gene expression studies to date are not informative, because they have been conducted using cells grown in batch culture which markedly departs from the conditions under which yeasts are grown during life span determinations. In this study, we have examined the gene expression changes that occur during either glucose limitation or elimination of nonessential-amino acids, both of which enhance yeast longevity, culturing cells in a chemostat at equilibrium, which closely mimics conditions they encounter during life span determinations. Expression of 59 genes was examined quantitatively by real-time, reverse transcriptase polymerase chain reaction (qRT-PCR), and the physiological state of the cultures was monitored. Extensive gene expression changes were detected, some of which were common to both CR regimes. The most striking of these was the induction of tricarboxylic acid (TCA) cycle and retrograde response target genes, which appears to be at least partially due to the up-regulation of the HAP4 gene. These gene regulatory events portend an increase in the generation of biosynthetic intermediates necessary for the production of daughter cells, which is the measure of yeast replicative life span.

摘要

旨在鉴定酵母酿酒酵母中热量限制 (CR) 途径和下游效应物的遗传分析表明,中央代谢对于 CR 延长复制寿命的重要性。然而,迄今为止有限的基因表达研究没有提供信息,因为它们是使用在批量培养中生长的细胞进行的,这与在寿命测定中酵母生长的条件明显不同。在这项研究中,我们研究了在葡萄糖限制或非必需氨基酸消除期间发生的基因表达变化,这两者都增强了酵母的寿命,在恒化器中培养细胞达到平衡,这非常类似于它们在寿命测定中遇到的条件。通过实时逆转录聚合酶链反应 (qRT-PCR) 定量检查了 59 个基因的表达,并且监测了培养物的生理状态。检测到广泛的基因表达变化,其中一些对两种 CR 方案都是共同的。其中最引人注目的是三羧酸 (TCA) 循环和逆行反应靶基因的诱导,这似乎至少部分归因于 HAP4 基因的上调。这些基因调控事件预示着生物合成中间体的产生增加,这是酵母复制寿命的衡量标准。

相似文献

1
Gene regulatory changes in yeast during life extension by nutrient limitation.
Exp Gerontol. 2010 Aug;45(7-8):621-31. doi: 10.1016/j.exger.2010.02.008. Epub 2010 Feb 21.
3
Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension.
PLoS Genet. 2009 May;5(5):e1000467. doi: 10.1371/journal.pgen.1000467. Epub 2009 May 8.
6
Effect of hxk2 deletion and HAP4 overexpression on fermentative capacity in Saccharomyces cerevisiae.
FEMS Yeast Res. 2008 Mar;8(2):195-203. doi: 10.1111/j.1567-1364.2007.00319.x. Epub 2007 Dec 20.
8
Two distinct pathways for trehalose assimilation in the yeast Saccharomyces cerevisiae.
Appl Environ Microbiol. 2004 May;70(5):2771-8. doi: 10.1128/AEM.70.5.2771-2778.2004.
10
Changes in transcription and metabolism during the early stage of replicative cellular senescence in budding yeast.
J Biol Chem. 2014 Nov 14;289(46):32081-32093. doi: 10.1074/jbc.M114.600528. Epub 2014 Oct 7.

引用本文的文献

1
Design principles of gene circuits for longevity.
Trends Cell Biol. 2025 Mar 12. doi: 10.1016/j.tcb.2025.02.006.
2
The Role of Metabolic Engineering Technologies for the Production of Fatty Acids in Yeast.
Biology (Basel). 2021 Jul 8;10(7):632. doi: 10.3390/biology10070632.
3
Plasma methionine metabolic profile is associated with longevity in mammals.
Commun Biol. 2021 Jun 11;4(1):725. doi: 10.1038/s42003-021-02254-3.
4
Insights into the Conserved Regulatory Mechanisms of Human and Yeast Aging.
Biomolecules. 2020 Jun 9;10(6):882. doi: 10.3390/biom10060882.
5
Heat-induced longevity in budding yeast requires respiratory metabolism and glutathione recycling.
Aging (Albany NY). 2018 Sep 17;10(9):2407-2427. doi: 10.18632/aging.101560.
6
Some Metabolites Act as Second Messengers in Yeast Chronological Aging.
Int J Mol Sci. 2018 Mar 15;19(3):860. doi: 10.3390/ijms19030860.
7
Adaptation to metabolic dysfunction during aging: Making the best of a bad situation.
Exp Gerontol. 2018 Jul 1;107:87-90. doi: 10.1016/j.exger.2017.07.013. Epub 2017 Jul 29.
8
Dietary restriction and lifespan: Lessons from invertebrate models.
Ageing Res Rev. 2017 Oct;39:3-14. doi: 10.1016/j.arr.2016.12.005. Epub 2016 Dec 19.
9
Loss of Nat4 and its associated histone H4 N-terminal acetylation mediates calorie restriction-induced longevity.
EMBO Rep. 2016 Dec;17(12):1829-1843. doi: 10.15252/embr.201642540. Epub 2016 Oct 31.
10
Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD homeostasis and contributes to longevity.
Front Biol (Beijing). 2015 Aug;10(4):333-357. doi: 10.1007/s11515-015-1367-x. Epub 2015 Jul 30.

本文引用的文献

2
Increased life span due to calorie restriction in respiratory-deficient yeast.
PLoS Genet. 2005 Nov;1(5):e69. doi: 10.1371/journal.pgen.0010069. Epub 2005 Nov 25.
3
Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO.
Mech Ageing Dev. 2006 Jan;127(1):48-56. doi: 10.1016/j.mad.2005.09.005. Epub 2005 Nov 8.
4
Calorie restriction and SIR2 genes--towards a mechanism.
Mech Ageing Dev. 2005 Sep;126(9):923-8. doi: 10.1016/j.mad.2005.03.013.
5
Diet manipulation and prevention of aging, cancer and autoimmune disease.
Curr Opin Clin Nutr Metab Care. 2005 Jul;8(4):382-7. doi: 10.1097/01.mco.0000172577.56396.7a.
7
Gene expression profiling studies of aging in cardiac and skeletal muscles.
Cardiovasc Res. 2005 May 1;66(2):205-12. doi: 10.1016/j.cardiores.2005.01.005.
9
Common and cell type-specific responses of human cells to mitochondrial dysfunction.
Exp Cell Res. 2005 Jan 15;302(2):270-80. doi: 10.1016/j.yexcr.2004.09.006.
10
Sir2 mediates longevity in the fly through a pathway related to calorie restriction.
Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15998-6003. doi: 10.1073/pnas.0404184101. Epub 2004 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验