Suppr超能文献

模块化组织工程:自下而上构建生物组织

Modular Tissue Engineering: Engineering Biological Tissues from the Bottom Up.

作者信息

Nichol Jason W, Khademhosseini Ali

机构信息

Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139.

出版信息

Soft Matter. 2009;5(7):1312-1319. doi: 10.1039/b814285h.

Abstract

Tissue engineering creates biological tissues that aim to improve the function of diseased or damaged tissues. To enhance the function of engineered tissues there is a need to generate structures that mimic the intricate architecture and complexity of native organs and tissues. With the desire to create more complex tissues with features such as developed and functional microvasculature, cell binding motifs and tissue specific morphology, tissue engineering techniques are beginning to focus on building modular microtissues with repeated functional units. The emerging field known as modular tissue engineering focuses on fabricating tissue building blocks with specific microarchitectural features and using these modular units to engineer biological tissues from the bottom up. In this review we will examine the promise and shortcomings of "bottom-up" approaches to creating engineered biological tissues. Specifically, we will survey the current techniques for controlling cell aggregation, proliferation and extracellular matrix deposition, as well as approaches to generating shape-controlled tissue modules. We will then highlight techniques utilized to create macroscale engineered biological tissues from modular microscale units.

摘要

组织工程学致力于创建生物组织,旨在改善患病或受损组织的功能。为了增强工程组织的功能,需要生成能够模拟天然器官和组织复杂结构与复杂性的结构。出于创建具有诸如发育良好且功能正常的微脉管系统、细胞结合基序和组织特异性形态等特征的更复杂组织的愿望,组织工程技术开始专注于构建具有重复功能单元的模块化微组织。新兴的模块化组织工程领域专注于制造具有特定微结构特征的组织构建块,并利用这些模块化单元自下而上地构建生物组织。在本综述中,我们将探讨“自下而上”创建工程生物组织方法的前景与不足。具体而言,我们将审视当前控制细胞聚集、增殖和细胞外基质沉积的技术,以及生成形状可控组织模块的方法。然后,我们将重点介绍利用模块化微尺度单元创建宏观尺度工程生物组织的技术。

相似文献

1
Modular Tissue Engineering: Engineering Biological Tissues from the Bottom Up.
Soft Matter. 2009;5(7):1312-1319. doi: 10.1039/b814285h.
2
Novel strategies to engineering biological tissue in vitro.
Methods Mol Biol. 2012;811:223-44. doi: 10.1007/978-1-61779-388-2_15.
3
Building a tissue in vitro from the bottom up: implications in regenerative medicine.
Methodist Debakey Cardiovasc J. 2013 Oct-Dec;9(4):213-7. doi: 10.14797/mdcj-9-4-213.
4
Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering.
Int J Nanomedicine. 2013;8:337-50. doi: 10.2147/IJN.S38635. Epub 2013 Jan 18.
5
Modular Tissue Assembly Strategies for Biofabrication of Engineered Cartilage.
Ann Biomed Eng. 2017 Jan;45(1):100-114. doi: 10.1007/s10439-016-1609-3. Epub 2016 Apr 12.
7
Engineering High-Quality Cartilage Microtissues Using Hydrocortisone Functionalized Microwells.
Tissue Eng Part C Methods. 2023 Apr;29(4):121-133. doi: 10.1089/ten.TEC.2022.0181. Epub 2023 Mar 14.
8
Microfabricated biomaterials for engineering 3D tissues.
Adv Mater. 2012 Apr 10;24(14):1782-804. doi: 10.1002/adma.201104631. Epub 2012 Mar 13.
9
Freestanding Magnetic Microtissues for Tissue Engineering Applications.
Adv Healthc Mater. 2022 Apr;11(8):e2101532. doi: 10.1002/adhm.202101532. Epub 2022 Jan 7.

引用本文的文献

1
Reconstructing the female reproductive system using 3D bioprinting in tissue engineering.
Mater Today Bio. 2025 Jul 22;34:102127. doi: 10.1016/j.mtbio.2025.102127. eCollection 2025 Oct.
2
Current Modalities in Soft-Tissue Reconstruction and Vascularized Adipose Engineering.
Biomolecules. 2025 May 28;15(6):780. doi: 10.3390/biom15060780.
4
Extrusion bioprinting: meeting the promise of human tissue biofabrication?
Prog Biomed Eng (Bristol). 2025 Mar 11;7(2):023001. doi: 10.1088/2516-1091/adb254.
6
Small molecular weight alginate gel porogen for the 3D bioprinting of microvasculature.
Front Bioeng Biotechnol. 2024 Sep 24;12:1452477. doi: 10.3389/fbioe.2024.1452477. eCollection 2024.
7
Organs on chips: fundamentals, bioengineering and applications.
J Artif Organs. 2025 Jun;28(2):110-130. doi: 10.1007/s10047-024-01460-0. Epub 2024 Aug 12.
8
Recent advances and applications of artificial intelligence in 3D bioprinting.
Biophys Rev (Melville). 2024 Jul 19;5(3):031301. doi: 10.1063/5.0190208. eCollection 2024 Sep.
9
Utilizing bioprinting to engineer spatially organized tissues from the bottom-up.
Stem Cell Res Ther. 2024 Apr 8;15(1):101. doi: 10.1186/s13287-024-03712-5.
10
Nanofunctionalized Microparticles for Glucose Delivery in Three-Dimensional Cell Assemblies.
ACS Appl Mater Interfaces. 2024 Apr 10;16(14):17347-17360. doi: 10.1021/acsami.4c02321. Epub 2024 Apr 1.

本文引用的文献

1
Molecular self-assembly into one-dimensional nanostructures.
Acc Chem Res. 2008 Dec;41(12):1674-84. doi: 10.1021/ar8000926.
2
Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs.
Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9522-7. doi: 10.1073/pnas.0801866105. Epub 2008 Jul 3.
3
Co-culture induces alignment in engineered cardiac constructs via MMP-2 expression.
Biochem Biophys Res Commun. 2008 Aug 29;373(3):360-5. doi: 10.1016/j.bbrc.2008.06.019. Epub 2008 Jun 16.
4
Cell encapsulation in sub-mm sized gel modules using replica molding.
PLoS One. 2008 May 21;3(5):e2258. doi: 10.1371/journal.pone.0002258.
5
Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing.
Tissue Eng Part A. 2008 Jan;14(1):127-33. doi: 10.1089/ten.a.2007.0158.
6
The thrombogenicity of human umbilical vein endothelial cell seeded collagen modules.
Biomaterials. 2008 Jun;29(16):2453-63. doi: 10.1016/j.biomaterials.2008.02.010. Epub 2008 Mar 5.
7
Tissue-engineered blood vessel for adult arterial revascularization.
N Engl J Med. 2007 Oct 4;357(14):1451-3. doi: 10.1056/NEJMc071536.
8
Microengineered hydrogels for tissue engineering.
Biomaterials. 2007 Dec;28(34):5087-92. doi: 10.1016/j.biomaterials.2007.07.021. Epub 2007 Aug 17.
9
Rods, tori, and honeycombs: the directed self-assembly of microtissues with prescribed microscale geometries.
FASEB J. 2007 Dec;21(14):4005-12. doi: 10.1096/fj.07-8710com. Epub 2007 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验