Suppr超能文献

鉴定新月柄杆菌中乳糖代谢所需的一种脱氢酶。

Identification of a dehydrogenase required for lactose metabolism in Caulobacter crescentus.

机构信息

Department of Biology, San Francisco State University, San Francisco, California 94132, USA.

出版信息

Appl Environ Microbiol. 2010 May;76(9):3004-14. doi: 10.1128/AEM.02085-09. Epub 2010 Feb 26.

Abstract

Caulobacter crescentus, which thrives in freshwater environments with low nutrient levels, serves as a model system for studying bacterial cell cycle regulation and organelle development. We examined its ability to utilize lactose (i) to gain insight into the metabolic capacities of oligotrophic bacteria and (ii) to obtain an additional genetic tool for studying this model organism, aiming to eliminate the basal enzymatic activity that hydrolyzes the chromogenic substrate 5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside (X-gal). Using a previously isolated transposon mutant, we identified a gene, lacA, that is required for growth on lactose as the sole carbon source and for turning colonies blue in the presence of X-gal. LacA, which contains a glucose-methanol-choline (GMC) oxidoreductase domain, has homology to the flavin subunit of Pectobacterium cypripedii's gluconate dehydrogenase. Sequence comparisons indicated that two genes near lacA, lacB and lacC, encode the other subunits of the membrane-bound dehydrogenase. In addition to lactose, all three lac genes are involved in the catabolism of three other beta-galactosides (lactulose, lactitol, and methyl-beta-d-galactoside) and two glucosides (salicin and trehalose). Dehydrogenase assays confirmed that the lac gene products oxidize lactose, salicin, and trehalose. This enzymatic activity is inducible, and increased lac expression in the presence of lactose and salicin likely contributes to the induction. Expression of lacA also depends on the presence of the lac genes, implying that the dehydrogenase participates in induction. The involvement of a dehydrogenase suggests that degradation of lactose and other sugars in C. crescentus may resemble a proposed pathway in Agrobacterium tumefaciens.

摘要

新月柄杆菌(Caulobacter crescentus)在营养水平低的淡水环境中茁壮成长,是研究细菌细胞周期调控和细胞器发育的模式系统。我们研究了其利用乳糖的能力,旨在(i)深入了解寡营养细菌的代谢能力,(ii)获得研究该模式生物的另一种遗传工具,以消除水解显色底物 5-溴-4-氯-3-吲哚基-β-D-半乳糖吡喃糖苷(X-gal)的基础酶活性。我们使用先前分离的转座子突变体,鉴定了一个基因 lacA,该基因是在以乳糖为唯一碳源的情况下生长所必需的,并且在存在 X-gal 的情况下使菌落变蓝。LacA 含有葡萄糖-甲醇-胆碱(GMC)氧化还原酶结构域,与 Pectobacterium cypripedii 的葡萄糖酸脱氢酶的黄素亚基具有同源性。序列比较表明,lacA 附近的两个基因 lacB 和 lacC 编码膜结合脱氢酶的其他亚基。除了乳糖外,所有三个 lac 基因都参与了三种其他β-半乳糖苷(乳果糖、乳糖醇和甲基-β-D-半乳糖苷)和两种糖苷(水杨苷和海藻糖)的分解代谢。脱氢酶测定证实,lac 基因产物氧化乳糖、水杨苷和海藻糖。这种酶活性是可诱导的,并且在存在乳糖和水杨苷时,lac 表达增加可能有助于诱导。lacA 的表达也依赖于 lac 基因的存在,这意味着该脱氢酶参与诱导。脱氢酶的参与表明,新月柄杆菌中乳糖和其他糖的降解可能类似于根癌农杆菌中提出的途径。

相似文献

1
Identification of a dehydrogenase required for lactose metabolism in Caulobacter crescentus.
Appl Environ Microbiol. 2010 May;76(9):3004-14. doi: 10.1128/AEM.02085-09. Epub 2010 Feb 26.
2
Development of selective and differential medium for Shigella sonnei using three carbohydrates (lactose, sorbitol, and xylose) and X-Gal.
J Microbiol Methods. 2015 Aug;115:34-41. doi: 10.1016/j.mimet.2015.05.019. Epub 2015 May 21.
3
Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression.
J Bacteriol. 2010 May;192(9):2434-44. doi: 10.1128/JB.01624-09. Epub 2010 Feb 26.
5
Alternative lactose catabolic pathway in Lactococcus lactis IL1403.
Appl Environ Microbiol. 2005 Oct;71(10):6060-9. doi: 10.1128/AEM.71.10.6060-6069.2005.
6
Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease.
J Bacteriol. 1999 May;181(10):3039-50. doi: 10.1128/JB.181.10.3039-3050.1999.
7
Characterization of a unique Caulobacter crescentus aldose-aldose oxidoreductase having dual activities.
Appl Microbiol Biotechnol. 2016 Jan;100(2):673-85. doi: 10.1007/s00253-015-7011-5. Epub 2015 Oct 1.
8
Lactose metabolism in Erwinia chrysanthemi.
J Bacteriol. 1985 Apr;162(1):248-55. doi: 10.1128/jb.162.1.248-255.1985.
9
Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus.
J Bacteriol. 2005 Dec;187(24):8437-49. doi: 10.1128/JB.187.24.8437-8449.2005.

引用本文的文献

本文引用的文献

2
Genetic and computational identification of a conserved bacterial metabolic module.
PLoS Genet. 2008 Dec;4(12):e1000310. doi: 10.1371/journal.pgen.1000310. Epub 2008 Dec 19.
3
CDD: specific functional annotation with the Conserved Domain Database.
Nucleic Acids Res. 2009 Jan;37(Database issue):D205-10. doi: 10.1093/nar/gkn845. Epub 2008 Nov 4.
4
Who's in charge here? Regulating cell cycle regulators.
Curr Opin Microbiol. 2008 Dec;11(6):547-52. doi: 10.1016/j.mib.2008.09.019. Epub 2008 Nov 3.
5
Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus.
Adv Microb Physiol. 2009;54:1-101. doi: 10.1016/S0065-2911(08)00001-5.
6
Two-component signaling systems and cell cycle control in Caulobacter crescentus.
Adv Exp Med Biol. 2008;631:122-30. doi: 10.1007/978-0-387-78885-2_8.
7
SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus.
J Bacteriol. 2008 Oct;190(20):6867-80. doi: 10.1128/JB.00700-08. Epub 2008 Aug 22.
9
TonB-dependent maltose transport by Caulobacter crescentus.
Microbiology (Reading). 2008 Jun;154(Pt 6):1748-1754. doi: 10.1099/mic.0.2008/017350-0.
10
NCBI BLAST: a better web interface.
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9. doi: 10.1093/nar/gkn201. Epub 2008 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验