Suppr超能文献

用于神经电生理研究的低阻抗纳米多孔金多电极阵列的制作。

The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studies.

机构信息

Center for Engineering in Medicine, Department of Surgery, Harvard Medical School, Massachusetts General Hospital, Shriners Hospitals for Children, Boston, MA, USA.

出版信息

Nanotechnology. 2010 Mar 26;21(12):125504. doi: 10.1088/0957-4484/21/12/125504. Epub 2010 Mar 5.

Abstract

Neural electrodes are essential tools for the study of the nervous system and related diseases. Low electrode impedance is a figure of merit for sensitive detection of neural electrical activity and numerous studies have aimed to reduce impedance. Unfortunately, most of these efforts have been tethered by a combination of poor functional coating adhesion, complicated fabrication techniques, and poor fabrication repeatability. We address these issues with a facile method for reliably producing multiple-electrode arrays with low impedance by patterning highly adherent nanoporous gold films using conventional microfabrication techniques. The high surface area-to-volume ratio of self-assembled nanoporous gold results in a more than 25-fold improvement in the electrode-electrolyte impedance, where at 1 kHz, 850 kOmega impedance for conventional Au electrodes is reduced to 30 kOmega for nanoporous gold electrodes. Low impedance provides a superior signal-to-noise ratio for detection of neural activity in noisy environments. We systematically studied the effect of film morphology on electrode impedance and successfully recorded field potentials from rat hippocampal slices. Here, we present our fabrication approach, the relationship between film morphology and impedance, and field potential recordings.

摘要

神经电极是研究神经系统和相关疾病的重要工具。低电极阻抗是敏感检测神经电活动的一个重要指标,因此许多研究都旨在降低阻抗。不幸的是,这些努力大多受到功能涂层附着力差、制造技术复杂以及制造重复性差的限制。我们通过使用常规微制造技术对高附着力的纳米多孔金薄膜进行图案化,解决了这些问题,从而可靠地生产出具有低阻抗的多电极阵列。自组装纳米多孔金的高表面积与体积比导致电极-电解质阻抗提高了 25 倍以上,其中在 1 kHz 时,传统 Au 电极的 850 kΩ 阻抗降低到纳米多孔金电极的 30 kΩ。低阻抗为在嘈杂环境中检测神经活动提供了更高的信噪比。我们系统地研究了薄膜形态对电极阻抗的影响,并成功地记录了大鼠海马切片的场电位。在这里,我们介绍了我们的制造方法、薄膜形态与阻抗之间的关系以及场电位记录。

相似文献

4
Gold nanograin microelectrodes for neuroelectronic interfaces.金纳米颗粒微电极用于神经电子接口。
Biotechnol J. 2013 Feb;8(2):206-14. doi: 10.1002/biot.201200219. Epub 2012 Nov 9.
6
10
Recording Quality Is Systematically Related to Electrode Impedance.录音质量与电极阻抗存在系统相关性。
Adv Healthc Mater. 2024 Sep;13(24):e2303401. doi: 10.1002/adhm.202303401. Epub 2024 Feb 23.

引用本文的文献

1
Interfacing with the Brain: How Nanotechnology Can Contribute.与大脑交互:纳米技术如何发挥作用。
ACS Nano. 2025 Mar 25;19(11):10630-10717. doi: 10.1021/acsnano.4c10525. Epub 2025 Mar 10.
4
Printable devices for neurotechnology.用于神经技术的可打印设备。
Front Neurosci. 2024 Feb 19;18:1332827. doi: 10.3389/fnins.2024.1332827. eCollection 2024.
8
Electrode Materials for Chronic Electrical Microstimulation.用于慢性电微刺激的电极材料。
Adv Healthc Mater. 2021 Jun;10(12):e2100119. doi: 10.1002/adhm.202100119. Epub 2021 May 24.

本文引用的文献

1
Microfluidics and multielectrode array-compatible organotypic slice culture method.微流控与多电极阵列兼容的器官型切片培养方法。
J Neurosci Methods. 2009 Mar 30;178(1):59-64. doi: 10.1016/j.jneumeth.2008.11.016. Epub 2008 Nov 30.
4
Microtechnology: meet neurobiology.微技术:与神经生物学相遇。
Lab Chip. 2007 Jan;7(1):30-40. doi: 10.1039/b612856b. Epub 2006 Oct 10.
10
Selective adaptation in networks of cortical neurons.皮层神经元网络中的选择性适应
J Neurosci. 2003 Oct 15;23(28):9349-56. doi: 10.1523/JNEUROSCI.23-28-09349.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验