Suppr超能文献

用于检测微流控通道中生物细胞的微波频率传感器。

Microwave frequency sensor for detection of biological cells in microfluidic channels.

出版信息

Biomicrofluidics. 2009 Aug 12;3(3):34103. doi: 10.1063/1.3187149.

Abstract

We present details of an apparatus for capacitive detection of biomaterials in microfluidic channels operating at microwave frequencies where dielectric effects due to interfacial polarization are minimal. A circuit model is presented, which can be used to adapt this detection system for use in other microfluidic applications and to identify ones where it would not be suitable. The detection system is based on a microwave coupled transmission line resonator integrated into an interferometer. At 1.5 GHz the system is capable of detecting changes in capacitance of 650 zF with a 50 Hz bandwidth. This system is well suited to the detection of biomaterials in a variety of suspending fluids, including phosphate-buffered saline. Applications involving both model particles (polystyrene microspheres) and living cells-baker's yeast (Saccharomyces cerevisiae) and Chinese hamster ovary cells-are presented.

摘要

我们介绍了一种用于在微波频率下工作的微流道中生物材料电容检测的设备的详细信息,此时由于界面极化引起的介电效应最小。我们提出了一个电路模型,该模型可用于将这种检测系统应用于其他微流控应用中,并确定不适合使用的应用。该检测系统基于集成到干涉仪中的微波耦合传输线谐振器。在 1.5GHz 时,该系统能够以 50Hz 的带宽检测 650zF 的电容变化。该系统非常适合于在各种悬浮液中检测生物材料,包括磷酸盐缓冲盐水。我们介绍了涉及模型粒子(聚苯乙烯微球)和活细胞-面包酵母(酿酒酵母)和中国仓鼠卵巢细胞的应用。

相似文献

1
Microwave frequency sensor for detection of biological cells in microfluidic channels.
Biomicrofluidics. 2009 Aug 12;3(3):34103. doi: 10.1063/1.3187149.
2
Microfluidic electromanipulation with capacitive detection for the mechanical analysis of cells.
Biomicrofluidics. 2008 Nov 6;2(4):44102. doi: 10.1063/1.2992127.
5
A Microwave Microfluidic Sensor Based on a Dual-Mode Resonator for Dual-Sensing Applications.
Sensors (Basel). 2017 Nov 24;17(12):2713. doi: 10.3390/s17122713.
6
A 9 MHz-2.4 GHz Fully Integrated Transceiver IC for a Microfluidic-CMOS Platform Dedicated to Miniaturized Dielectric Spectroscopy.
IEEE Trans Biomed Circuits Syst. 2015 Dec;9(6):849-61. doi: 10.1109/TBCAS.2015.2501816. Epub 2016 Jan 8.
7
Novel Fabrication Process for Integration of Microwave Sensors in Microfluidic Channels.
Micromachines (Basel). 2020 Mar 19;11(3):320. doi: 10.3390/mi11030320.
8
Simultaneous dielectric monitoring of microfluidic channels at microwaves utilizing a metamaterial transmission line structure.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6273-6. doi: 10.1109/EMBC.2012.6347428.
9
Modified Microwave Sensor with a Patterned Ground Heater for Detection and Prevention of Ice Accumulation.
ACS Appl Mater Interfaces. 2020 Dec 9;12(49):55483-55492. doi: 10.1021/acsami.0c17173. Epub 2020 Nov 26.
10
A microwave interferometric system for simultaneous actuation and detection of single biological cells.
Lab Chip. 2009 Dec 7;9(23):3406-12. doi: 10.1039/b908974h. Epub 2009 Oct 2.

引用本文的文献

1
Rapid Differentiation between Microplastic Particles Using Integrated Microwave Cytometry with 3D Electrodes.
ACS Sens. 2025 Mar 28;10(3):1729-1735. doi: 10.1021/acssensors.4c03268. Epub 2025 Mar 18.
2
Ultrasensitive liquid sensor based on an embedded microchannel bulk acoustic wave resonator.
Microsyst Nanoeng. 2024 Oct 11;10(1):143. doi: 10.1038/s41378-024-00790-6.
3
Dielectric Detection of Single Nanoparticles Using a Microwave Resonator Integrated with a Nanopore.
ACS Omega. 2024 Feb 8;9(7):7827-7834. doi: 10.1021/acsomega.3c07506. eCollection 2024 Feb 20.
4
A Novel Microwave Resonant Sensor for Measuring Cancer Cell Line Aggressiveness.
Sensors (Basel). 2022 Jun 9;22(12):4383. doi: 10.3390/s22124383.
5
Dynamically controlled dielectrophoresis using resonant tuning.
Electrophoresis. 2021 May;42(9-10):1079-1092. doi: 10.1002/elps.202000328. Epub 2021 Mar 9.
7
Industrializing Autologous Adoptive Immunotherapies: Manufacturing Advances and Challenges.
Front Med (Lausanne). 2018 May 23;5:150. doi: 10.3389/fmed.2018.00150. eCollection 2018.
8
A Review on Passive and Integrated Near-Field Microwave Biosensors.
Biosensors (Basel). 2017 Sep 23;7(4):42. doi: 10.3390/bios7040042.
10
Ultra-fast cell counters based on microtubular waveguides.
Sci Rep. 2017 Jan 30;7:41584. doi: 10.1038/srep41584.

本文引用的文献

1
Real-time detection, control, and sorting of microfluidic droplets.
Biomicrofluidics. 2007 Oct 3;1(4):44101. doi: 10.1063/1.2795392.
2
Microfluidic electromanipulation with capacitive detection for the mechanical analysis of cells.
Biomicrofluidics. 2008 Nov 6;2(4):44102. doi: 10.1063/1.2992127.
3
Microfabricated high-throughput electronic particle detector.
Rev Sci Instrum. 2007 Oct;78(10):104301. doi: 10.1063/1.2794230.
4
Irreversible electroporation in medicine.
Technol Cancer Res Treat. 2007 Aug;6(4):255-60. doi: 10.1177/153303460700600401.
5
Dynamic single-cell analysis for quantitative biology.
Anal Chem. 2006 Dec 1;78(23):7918-25. doi: 10.1021/ac069490p.
6
Ion channel characterization using single cell impedance spectroscopy.
Lab Chip. 2006 Nov;6(11):1412-4. doi: 10.1039/b608930e. Epub 2006 Sep 15.
7
Microsystems for isolation and electrophysiological analysis of breast cancer cells from blood.
Biosens Bioelectron. 2006 Apr 15;21(10):1907-14. doi: 10.1016/j.bios.2006.01.024. Epub 2006 Mar 10.
8
Electronic sorting and recovery of single live cells from microlitre sized samples.
Lab Chip. 2006 Jan;6(1):121-6. doi: 10.1039/b505884h. Epub 2005 Nov 15.
9
Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation.
Cytometry A. 2005 Jun;65(2):124-32. doi: 10.1002/cyto.a.20141.
10
Effect of cell electroporation on the conductivity of a cell suspension.
Biophys J. 2005 Jun;88(6):4378-90. doi: 10.1529/biophysj.104.048975. Epub 2005 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验