Suppr超能文献

建筑环境与基于位置的身体活动。

The built environment and location-based physical activity.

机构信息

Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana 47907-2046, USA.

出版信息

Am J Prev Med. 2010 Apr;38(4):429-38. doi: 10.1016/j.amepre.2009.12.032.

Abstract

BACKGROUND

Studies of the built environment and physical activity have implicitly assumed that a substantial amount of activity occurs near home, but in fact the location is unknown.

PURPOSE

This study aims to examine associations between built environment variables within home and work buffers and moderate-to-vigorous physical activity (MVPA) occurring within these locations.

METHODS

Adults (n=148) from Massachusetts wore an accelerometer and GPS unit for up to 4 days. Levels of MVPA were quantified within 50-m and 1-km home and work buffers. Multiple regression models were used to examine associations between five objective built environment variables within 1-km home and work buffers (intersection density, land use mix, population and housing unit density, vegetation index) and MVPA within those areas.

RESULTS

The mean daily minutes of MVPA accumulated in all locations=61.1+/-32.8, whereas duration within the 1-km home buffers=14.0+/-16.4 minutes. Intersection density, land use mix, and population and housing unit density within 1-km home buffers were positively associated with MVPA in the buffer, whereas a vegetation index showed an inverse relationship (all p<0.05). None of these variables showed associations with total MVPA. Within 1 km of work, only population and housing unit density were significantly associated with MVPA within the buffer.

CONCLUSIONS

Findings are consistent with studies showing that certain attributes of the built environment around homes are positively related to physical activity, but in this case only when the outcome was location-based. Simultaneous accelerometer-GPS monitoring shows promise as a method to improve understanding of how the built environment influences physical activity behaviors by allowing activity to be quantified in a range of physical contexts and thereby provide a more explicit link between physical activity outcomes and built environment exposures.

摘要

背景

对建筑环境和身体活动的研究隐含地假设大量活动发生在离家较近的地方,但实际上位置是未知的。

目的

本研究旨在检验家与工作缓冲区的建筑环境变量与这些位置发生的中等到剧烈身体活动(MVPA)之间的关联。

方法

马萨诸塞州的成年人(n=148)佩戴加速度计和 GPS 装置长达 4 天。在 50 米和 1 公里的家庭和工作缓冲区中量化了 MVPA 水平。使用多元回归模型检验了 1 公里家庭和工作缓冲区中五个客观建筑环境变量(交叉口密度、土地利用混合、人口和住房单元密度、植被指数)与这些区域内 MVPA 之间的关联。

结果

所有地点的平均每日 MVPA 积累量为 61.1+/-32.8 分钟,而 1 公里家庭缓冲区的持续时间为 14.0+/-16.4 分钟。1 公里家庭缓冲区中的交叉口密度、土地利用混合以及人口和住房单元密度与缓冲区中的 MVPA 呈正相关,而植被指数则呈负相关(均 p<0.05)。这些变量都与总 MVPA 没有关联。在 1 公里范围内,只有人口和住房单元密度与缓冲区中的 MVPA 显著相关。

结论

研究结果与表明家庭周围某些建筑环境特征与身体活动呈正相关的研究一致,但在这种情况下,只有当结果基于位置时才如此。同时使用加速度计-GPS 监测有望成为一种方法,通过允许在各种物理环境中量化活动,从而更好地理解建筑环境如何影响身体活动行为,并为身体活动结果和建筑环境暴露之间建立更明确的联系。

相似文献

1
The built environment and location-based physical activity.
Am J Prev Med. 2010 Apr;38(4):429-38. doi: 10.1016/j.amepre.2009.12.032.
2
Accelerometer and GPS Data to Analyze Built Environments and Physical Activity.
Res Q Exerc Sport. 2019 Sep;90(3):395-402. doi: 10.1080/02701367.2019.1609649. Epub 2019 Jun 14.
5
How far from home? The locations of physical activity in an urban U.S. setting.
Prev Med. 2014 Dec;69:181-6. doi: 10.1016/j.ypmed.2014.08.034. Epub 2014 Oct 5.
8
GPS-based built environment measures associated with adult physical activity.
Health Place. 2021 Jul;70:102602. doi: 10.1016/j.healthplace.2021.102602. Epub 2021 Jun 15.
10
Built Environment Influences of Children's Physical Activity: Examining Differences by Neighbourhood Size and Sex.
Int J Environ Res Public Health. 2016 Jan 15;13(1):130. doi: 10.3390/ijerph13010130.

引用本文的文献

2
Summer Heat, Historic Redlining, and Neighborhood Walking among Older Adults: 2017 National Household Travel Survey.
J Urban Health. 2024 Dec;101(6):1178-1187. doi: 10.1007/s11524-024-00892-6. Epub 2024 Aug 12.
10
GPS-based built environment measures associated with adult physical activity.
Health Place. 2021 Jul;70:102602. doi: 10.1016/j.healthplace.2021.102602. Epub 2021 Jun 15.

本文引用的文献

2
Prediction of activity mode with global positioning system and accelerometer data.
Med Sci Sports Exerc. 2008 May;40(5):972-8. doi: 10.1249/MSS.0b013e318164c407.
3
Amount of time spent in sedentary behaviors in the United States, 2003-2004.
Am J Epidemiol. 2008 Apr 1;167(7):875-81. doi: 10.1093/aje/kwm390. Epub 2008 Feb 25.
4
Physical activity in the United States measured by accelerometer.
Med Sci Sports Exerc. 2008 Jan;40(1):181-8. doi: 10.1249/mss.0b013e31815a51b3.
7
Green neighborhoods, food retail and childhood overweight: differences by population density.
Am J Health Promot. 2007 Mar-Apr;21(4 Suppl):317-25. doi: 10.4278/0890-1171-21.4s.317.
8
Translating accelerometer counts into energy expenditure: advancing the quest.
J Appl Physiol (1985). 2006 Apr;100(4):1107-8. doi: 10.1152/japplphysiol.01577.2005.
9
Portable global positioning units to complement accelerometry-based physical activity monitors.
Med Sci Sports Exerc. 2005 Nov;37(11 Suppl):S572-81. doi: 10.1249/01.mss.0000185297.72328.ce.
10
Linking objectively measured physical activity with objectively measured urban form: findings from SMARTRAQ.
Am J Prev Med. 2005 Feb;28(2 Suppl 2):117-25. doi: 10.1016/j.amepre.2004.11.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验