Suppr超能文献

神经元以纳米级的灵敏度感知纳米级的粗糙度。

Neurons sense nanoscale roughness with nanometer sensitivity.

机构信息

Italian Institute of Technology, Center for Bio-Molecular Nanotechnology, Via Barsanti, 1-73010 Arnesano, Lecce, Italy.

出版信息

Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6264-9. doi: 10.1073/pnas.0914456107. Epub 2010 Mar 22.

Abstract

The interaction between cells and nanostructured materials is attracting increasing interest, because of the possibility to open up novel concepts for the design of smart nanobiomaterials with active biological functionalities. In this frame we investigated the response of human neuroblastoma cell line (SH-SY5Y) to gold surfaces with different levels of nanoroughness. To achieve a precise control of the nanoroughness with nanometer resolution, we exploited a wet chemistry approach based on spontaneous galvanic displacement reaction. We demonstrated that neurons sense and actively respond to the surface nanotopography, with a surprising sensitivity to variations of few nanometers. We showed that focal adhesion complexes, which allow cellular sensing, are strongly affected by nanostructured surfaces, leading to a marked decrease in cell adhesion. Moreover, cells adherent on nanorough surfaces exhibit loss of neuron polarity, Golgi apparatus fragmentation, nuclear condensation, and actin cytoskeleton that is not functionally organized. Apoptosis/necrosis assays established that nanoscale features induce cell death by necrosis, with a trend directly related to roughness values. Finally, by seeding SH-SY5Y cells onto micropatterned flat and nanorough gold surfaces, we demonstrated the possibility to realize substrates with cytophilic or cytophobic behavior, simply by fine-tuning their surface topography at nanometer scale. Specific and functional adhesion of cells occurred only onto flat gold stripes, with a clear self-alignment of neurons, delivering a simple and elegant approach for the design and development of biomaterials with precise nanostructure-triggered biological responses.

摘要

细胞与纳米结构材料的相互作用引起了越来越多的关注,因为有可能为设计具有主动生物功能的智能纳米生物材料开辟新的概念。在这个框架内,我们研究了人神经母细胞瘤细胞系 (SH-SY5Y) 对具有不同纳米粗糙度的金表面的反应。为了以纳米分辨率精确控制纳米粗糙度,我们利用了一种基于自发电置换反应的湿化学方法。我们证明神经元可以感知并主动响应表面的纳米形貌,对几纳米的变化具有惊人的敏感性。我们表明,允许细胞感知的黏着斑复合物强烈受到纳米结构表面的影响,导致细胞黏附显著减少。此外,在纳米粗糙表面上附着的细胞表现出神经元极性丧失、高尔基体片段化、核浓缩和不能正常组织的肌动蛋白细胞骨架。凋亡/坏死测定表明,纳米级特征通过坏死诱导细胞死亡,其趋势与粗糙度值直接相关。最后,通过将 SH-SY5Y 细胞接种到微图案化的平的和纳米粗糙的金表面上,我们证明了通过精细调整其纳米尺度的表面形貌,实现亲细胞或疏细胞行为的底物的可能性。只有在平的金条上才能发生细胞的特异性和功能性附着,神经元明显自对准,为设计和开发具有精确纳米结构触发的生物响应的生物材料提供了一种简单而优雅的方法。

相似文献

1
Neurons sense nanoscale roughness with nanometer sensitivity.神经元以纳米级的灵敏度感知纳米级的粗糙度。
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6264-9. doi: 10.1073/pnas.0914456107. Epub 2010 Mar 22.
10

引用本文的文献

本文引用的文献

8
Environmental sensing through focal adhesions.通过粘着斑进行环境感知。
Nat Rev Mol Cell Biol. 2009 Jan;10(1):21-33. doi: 10.1038/nrm2593.
9
Stem cell fate dictated solely by altered nanotube dimension.干细胞命运仅由改变的纳米管尺寸决定。
Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2130-5. doi: 10.1073/pnas.0813200106. Epub 2009 Jan 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验