Suppr超能文献

V1方向可塑性可通过广泛调谐的前馈输入和皮质内锐化来解释。

V1 orientation plasticity is explained by broadly tuned feedforward inputs and intracortical sharpening.

作者信息

Teich Andrew F, Qian Ning

机构信息

Department of Pathology, Columbia University, New York, New York 10032, USA.

出版信息

Vis Neurosci. 2010 Mar;27(1-2):57-73. doi: 10.1017/S0952523810000039. Epub 2010 Apr 16.

Abstract

Orientation adaptation and perceptual learning change orientation tuning curves of V1 cells. Adaptation shifts tuning curve peaks away from the adapted orientation, reduces tuning curve slopes near the adapted orientation, and increases the responses on the far flank of tuning curves. Learning an orientation discrimination task increases tuning curve slopes near the trained orientation. These changes have been explained previously in a recurrent model (RM) of orientation selectivity. However, the RM generates only complex cells when they are well tuned, so that there is currently no model of orientation plasticity for simple cells. In addition, some feedforward models, such as the modified feedforward model (MFM), also contain recurrent cortical excitation, and it is unknown whether they can explain plasticity. Here, we compare plasticity in the MFM, which simulates simple cells, and a recent modification of the RM (MRM), which displays a continuum of simple-to-complex characteristics. Both pre- and postsynaptic-based modifications of the recurrent and feedforward connections in the models are investigated. The MRM can account for all the learning- and adaptation-induced plasticity, for both simple and complex cells, while the MFM cannot. The key features from the MRM required for explaining plasticity are broadly tuned feedforward inputs and sharpening by a Mexican hat intracortical interaction profile. The mere presence of recurrent cortical interactions in feedforward models like the MFM is insufficient; such models have more rigid tuning curves. We predict that the plastic properties must be absent for cells whose orientation tuning arises from a feedforward mechanism.

摘要

朝向适应和知觉学习会改变初级视觉皮层(V1)细胞的朝向调谐曲线。适应会使调谐曲线的峰值远离适应的朝向,减小适应朝向附近的调谐曲线斜率,并增加调谐曲线远端侧翼的反应。学习一个朝向辨别任务会增加训练朝向附近的调谐曲线斜率。这些变化先前已在一个朝向选择性的循环模型(RM)中得到解释。然而,当RM调谐良好时,它仅产生复杂细胞,因此目前尚无关于简单细胞的朝向可塑性模型。此外,一些前馈模型,如改进的前馈模型(MFM),也包含皮层内循环兴奋,尚不清楚它们是否能解释可塑性。在这里,我们比较了模拟简单细胞的MFM和最近对RM的一种修改(MRM)中的可塑性,MRM展现出从简单到复杂特征的连续变化。我们研究了模型中循环和前馈连接基于突触前和突触后的修改。MRM能够解释简单和复杂细胞中所有由学习和适应引起的可塑性,而MFM则不能。解释可塑性所需的MRM的关键特征是广泛调谐的前馈输入以及通过墨西哥帽皮层内相互作用轮廓进行的锐化。像MFM这样的前馈模型中仅仅存在皮层内循环相互作用是不够的;这样的模型具有更刚性的调谐曲线。我们预测,对于那些朝向调谐源于前馈机制的细胞,其可塑性特性必然不存在。

相似文献

2
Comparison among some models of orientation selectivity.一些方向选择性模型之间的比较。
J Neurophysiol. 2006 Jul;96(1):404-19. doi: 10.1152/jn.00015.2005. Epub 2006 Apr 19.

引用本文的文献

1
A circuit model for transsaccadic space updating and mislocalization.用于扫视间空间更新和定位错误的电路模型。
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2422911122. doi: 10.1073/pnas.2422911122. Epub 2025 May 19.
8
Pattern Adaptation and Normalization Reweighting.模式适应与归一化重加权
J Neurosci. 2016 Sep 21;36(38):9805-16. doi: 10.1523/JNEUROSCI.1067-16.2016.
9
Canonical computations of cerebral cortex.大脑皮层的典型计算
Curr Opin Neurobiol. 2016 Apr;37:75-84. doi: 10.1016/j.conb.2016.01.008. Epub 2016 Feb 8.

本文引用的文献

2
Comparison among some models of orientation selectivity.一些方向选择性模型之间的比较。
J Neurophysiol. 2006 Jul;96(1):404-19. doi: 10.1152/jn.00015.2005. Epub 2006 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验