Department of Computer Science, Brandeis University, Waltham, MA 02454, USA.
Neuroinformatics. 2010 Jun;8(2):83-100. doi: 10.1007/s12021-010-9067-9.
Cell-based high content screening (HCS) is becoming an important and increasingly favored approach in therapeutic drug discovery and functional genomics. In HCS, changes in cellular morphology and biomarker distributions provide an information-rich profile of cellular responses to experimental treatments such as small molecules or gene knockdown probes. One obstacle that currently exists with such cell-based assays is the availability of image processing algorithms that are capable of reliably and automatically analyzing large HCS image sets. HCS images of primary neuronal cell cultures are particularly challenging to analyze due to complex cellular morphology. Here we present a robust method for quantifying and statistically analyzing the morphology of neuronal cells in HCS images. The major advantages of our method over existing software lie in its capability to correct non-uniform illumination using the contrast-limited adaptive histogram equalization method; segment neuromeres using Gabor-wavelet texture analysis; and detect faint neurites by a novel phase-based neurite extraction algorithm that is invariant to changes in illumination and contrast and can accurately localize neurites. Our method was successfully applied to analyze a large HCS image set generated in a morphology screen for polyglutamine-mediated neuronal toxicity using primary neuronal cell cultures derived from embryos of a Drosophila Huntington's Disease (HD) model.
基于细胞的高通量筛选 (HCS) 正在成为治疗药物发现和功能基因组学中一种重要且越来越受欢迎的方法。在 HCS 中,细胞形态和生物标志物分布的变化为细胞对小分子或基因敲低探针等实验处理的反应提供了丰富的信息。目前,基于细胞的测定存在一个障碍,即缺乏能够可靠且自动分析大量 HCS 图像集的图像处理算法。由于细胞形态复杂,原代神经元细胞培养物的 HCS 图像尤其难以分析。在这里,我们提出了一种用于定量和统计分析 HCS 图像中神经元细胞形态的稳健方法。与现有软件相比,我们的方法的主要优势在于它能够使用对比度受限的自适应直方图均衡化方法校正非均匀照明;使用 Gabor 小波纹理分析分割神经节;并通过一种新颖的基于相位的神经突提取算法检测微弱的神经突,该算法对光照和对比度的变化具有不变性,并且可以准确定位神经突。我们的方法成功应用于分析使用源自果蝇亨廷顿病 (HD) 模型胚胎的原代神经元细胞培养物进行多聚谷氨酰胺介导的神经元毒性的形态筛选中生成的大型 HCS 图像集。