Suppr超能文献

MHC Ⅱ类表位预测算法。

MHC class II epitope predictive algorithms.

机构信息

Department of Systems Biology, Technical University of Denmark, Centre for Biological Sequence Analysis, Lyngby, Denmark.

出版信息

Immunology. 2010 Jul;130(3):319-28. doi: 10.1111/j.1365-2567.2010.03268.x. Epub 2010 Apr 12.

Abstract

Major histocompatibility complex class II (MHC-II) molecules sample peptides from the extracellular space, allowing the immune system to detect the presence of foreign microbes from this compartment. To be able to predict the immune response to given pathogens, a number of methods have been developed to predict peptide-MHC binding. However, few methods other than the pioneering TEPITOPE/ProPred method have been developed for MHC-II. Despite recent progress in method development, the predictive performance for MHC-II remains significantly lower than what can be obtained for MHC-I. One reason for this is that the MHC-II molecule is open at both ends allowing binding of peptides extending out of the groove. The binding core of MHC-II-bound peptides is therefore not known a priori and the binding motif is hence not readily discernible. Recent progress has been obtained by including the flanking residues in the predictions. All attempts to make ab initio predictions based on protein structure have failed to reach predictive performances similar to those that can be obtained by data-driven methods. Thousands of different MHC-II alleles exist in humans. Recently developed pan-specific methods have been able to make reasonably accurate predictions for alleles that were not included in the training data. These methods can be used to define supertypes (clusters) of MHC-II alleles where alleles within each supertype have similar binding specificities. Furthermore, the pan-specific methods have been used to make a graphical atlas such as the MHCMotifviewer, which allows for visual comparison of specificities of different alleles.

摘要

主要组织相容性复合体 II 类 (MHC-II) 分子从细胞外空间中采样肽段,使免疫系统能够从该隔室检测外来微生物的存在。为了能够预测对给定病原体的免疫反应,已经开发了许多方法来预测肽-MHC 结合。然而,除了开创性的 TEPITOPE/ProPred 方法之外,针对 MHC-II 的方法很少。尽管在方法开发方面取得了最近的进展,但 MHC-II 的预测性能仍然明显低于 MHC-I 所能获得的性能。造成这种情况的一个原因是 MHC-II 分子在两端都是开放的,允许结合延伸出凹槽的肽。因此,MHC-II 结合肽的结合核心是未知的,并且结合基序不易察觉。通过在预测中包含侧翼残基,最近取得了进展。所有基于蛋白质结构进行从头预测的尝试都未能达到与数据驱动方法可获得的预测性能相似的水平。在人类中存在数千种不同的 MHC-II 等位基因。最近开发的泛特异性方法能够对未包含在训练数据中的等位基因进行合理准确的预测。这些方法可用于定义 MHC-II 等位基因的超型(簇),其中每个超型内的等位基因具有相似的结合特异性。此外,泛特异性方法已用于制作图形图谱,例如 MHCMotifviewer,可用于直观比较不同等位基因的特异性。

相似文献

1
MHC class II epitope predictive algorithms.
Immunology. 2010 Jul;130(3):319-28. doi: 10.1111/j.1365-2567.2010.03268.x. Epub 2010 Apr 12.
3
Structural properties of MHC class II ligands, implications for the prediction of MHC class II epitopes.
PLoS One. 2010 Dec 30;5(12):e15877. doi: 10.1371/journal.pone.0015877.
4
TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules.
PLoS One. 2012;7(2):e30483. doi: 10.1371/journal.pone.0030483. Epub 2012 Feb 23.
5
Determination of a Predictive Cleavage Motif for Eluted Major Histocompatibility Complex Class II Ligands.
Front Immunol. 2018 Aug 6;9:1795. doi: 10.3389/fimmu.2018.01795. eCollection 2018.
6
Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification.
Immunogenetics. 2015 Nov;67(11-12):641-50. doi: 10.1007/s00251-015-0873-y. Epub 2015 Sep 29.
7
Improving the prediction of HLA class I-binding peptides using a supertype-based method.
J Immunol Methods. 2014 Mar;405:109-20. doi: 10.1016/j.jim.2014.01.015. Epub 2014 Feb 6.
9
Improved methods for predicting peptide binding affinity to MHC class II molecules.
Immunology. 2018 Jul;154(3):394-406. doi: 10.1111/imm.12889. Epub 2018 Feb 6.

引用本文的文献

1
Opportunities and challenges with artificial intelligence in allergy and immunology: a bibliometric study.
Front Med (Lausanne). 2025 Apr 9;12:1523902. doi: 10.3389/fmed.2025.1523902. eCollection 2025.
2
Comparative performance analysis of neoepitope prediction algorithms in head and neck cancer.
Front Immunol. 2025 Mar 4;16:1494453. doi: 10.3389/fimmu.2025.1494453. eCollection 2025.
3
Evaluation of Multipeptide Sequences Identified in Silico for the Serological Detection of Antibodies against Vector-Borne Diseases.
Am J Trop Med Hyg. 2025 Jan 28;112(4):909-915. doi: 10.4269/ajtmh.24-0491. Print 2025 Apr 2.
4
analysis for the development of multi-epitope vaccines against .
Front Immunol. 2024 Nov 18;15:1474346. doi: 10.3389/fimmu.2024.1474346. eCollection 2024.
5
Non-RBD peptides of SARS-CoV-2 spike protein exhibit immunodominance as they elicit both innate and adaptive immune responses.
Heliyon. 2024 Oct 29;10(21):e39941. doi: 10.1016/j.heliyon.2024.e39941. eCollection 2024 Nov 15.
7
Energy landscapes of peptide-MHC binding.
PLoS Comput Biol. 2024 Sep 3;20(9):e1012380. doi: 10.1371/journal.pcbi.1012380. eCollection 2024 Sep.
8
Allogeneic HLA Humoral Immunogenicity and the Prediction of Donor-Specific HLA Antibody Development.
Antibodies (Basel). 2024 Jul 24;13(3):61. doi: 10.3390/antib13030061.
9
Strategies to improve safety profile of AAV vectors.
Front Mol Med. 2022 Nov 1;2:1054069. doi: 10.3389/fmmed.2022.1054069. eCollection 2022.

本文引用的文献

1
Limitations of Ab initio predictions of peptide binding to MHC class II molecules.
PLoS One. 2010 Feb 17;5(2):e9272. doi: 10.1371/journal.pone.0009272.
2
The MHC motif viewer: a visualization tool for MHC binding motifs.
Curr Protoc Immunol. 2010 Feb;Chapter 18:18.17.1-18.17.13. doi: 10.1002/0471142735.im1817s88.
7
Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research.
BMC Bioinformatics. 2008 Dec 12;9 Suppl 12(Suppl 12):S22. doi: 10.1186/1471-2105-9-S12-S22.
8
NetMHCpan, a method for MHC class I binding prediction beyond humans.
Immunogenetics. 2009 Jan;61(1):1-13. doi: 10.1007/s00251-008-0341-z. Epub 2008 Nov 12.
10
Shift-invariant adaptive double threading: learning MHC II-peptide binding.
J Comput Biol. 2008 Sep;15(7):927-42. doi: 10.1089/cmb.2007.0183.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验