Suppr超能文献

通过原子力显微镜成像和表征的少电子量子点的能级

Energy levels of few-electron quantum dots imaged and characterized by atomic force microscopy.

作者信息

Cockins Lynda, Miyahara Yoichi, Bennett Steven D, Clerk Aashish A, Studenikin Sergei, Poole Philip, Sachrajda Andrew, Grutter Peter

机构信息

Department of Physics, McGill University, Montreal, Quebec, Canada.

出版信息

Proc Natl Acad Sci U S A. 2010 May 25;107(21):9496-501. doi: 10.1073/pnas.0912716107. Epub 2010 May 10.

Abstract

Strong confinement of charges in few-electron systems such as in atoms, molecules, and quantum dots leads to a spectrum of discrete energy levels often shared by several degenerate states. Because the electronic structure is key to understanding their chemical properties, methods that probe these energy levels in situ are important. We show how electrostatic force detection using atomic force microscopy reveals the electronic structure of individual and coupled self-assembled quantum dots. An electron addition spectrum results from a change in cantilever resonance frequency and dissipation when an electron tunnels on/off a dot. The spectra show clear level degeneracies in isolated quantum dots, supported by the quantitative measurement of predicted temperature-dependent shifts of Coulomb blockade peaks. Scanning the surface shows that several quantum dots may reside on what topographically appears to be just one. Relative coupling strengths can be estimated from these images of grouped coupled dots.

摘要

在诸如原子、分子和量子点等少电子系统中,电荷的强限制导致了一系列离散的能级,这些能级通常由几个简并态共享。由于电子结构是理解其化学性质的关键,因此原位探测这些能级的方法很重要。我们展示了如何使用原子力显微镜进行静电力检测来揭示单个和耦合的自组装量子点的电子结构。当一个电子隧穿进/出一个量子点时,悬臂梁共振频率和耗散的变化会产生电子添加光谱。光谱显示了孤立量子点中清晰的能级简并,这得到了库仑阻塞峰预测的温度依赖性位移的定量测量的支持。扫描表面显示,几个量子点可能位于地形上看起来只是一个的位置上。可以从这些成组耦合点的图像中估计相对耦合强度。

相似文献

1
Energy levels of few-electron quantum dots imaged and characterized by atomic force microscopy.
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9496-501. doi: 10.1073/pnas.0912716107. Epub 2010 May 10.
3
Detection of single-electron charging in an individual InAs quantum dot by noncontact atomic-force microscopy.
Phys Rev Lett. 2005 Feb 11;94(5):056802. doi: 10.1103/PhysRevLett.94.056802. Epub 2005 Feb 8.
4
Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots.
Nanotechnology. 2022 Jan 24;33(16). doi: 10.1088/1361-6528/ac47ce.
5
Excited-state spectroscopy on an individual quantum dot using atomic force microscopy.
Nano Lett. 2012 Feb 8;12(2):709-13. doi: 10.1021/nl2036222. Epub 2012 Jan 5.
6
Fast current blinking in individual PbS and CdSe quantum dots.
Nano Lett. 2013 Jun 12;13(6):2338-45. doi: 10.1021/nl3036096. Epub 2013 May 14.
7
Scanned probe imaging of single-electron charge states in nanotube quantum dots.
Science. 2002 May 10;296(5570):1098-101. doi: 10.1126/science.1069923.
8
Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
Acc Chem Res. 2013 Nov 19;46(11):2607-15. doi: 10.1021/ar400078u. Epub 2013 Jun 4.
9
Quantum state readout of individual quantum dots by electrostatic force detection.
Nanotechnology. 2017 Feb 10;28(6):064001. doi: 10.1088/1361-6528/aa5261. Epub 2017 Jan 6.
10
Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot.
Phys Rev Lett. 2010 Jan 8;104(1):017203. doi: 10.1103/PhysRevLett.104.017203.

引用本文的文献

2
Probing Molecular Properties at Atomic Length Scale Using Charge-State Control.
Chem Rev. 2025 Jun 25;125(12):5830-5847. doi: 10.1021/acs.chemrev.4c00899. Epub 2025 Jun 2.
3
Energy dissipation on magic angle twisted bilayer graphene.
Commun Phys. 2023;6(1):344. doi: 10.1038/s42005-023-01441-4. Epub 2023 Nov 28.
4
Energy Dissipation from Confined States in Nanoporous Molecular Networks.
ACS Nano. 2022 Oct 25;16(10):16314-16321. doi: 10.1021/acsnano.2c05333. Epub 2022 Sep 23.
6
How to measure the entropy of a mesoscopic system via thermoelectric transport.
Nat Commun. 2019 Dec 20;10(1):5801. doi: 10.1038/s41467-019-13630-3.
7
Mechanical dissipation from charge and spin transitions in oxygen-deficient SrTiO surfaces.
Nat Commun. 2018 Jul 27;9(1):2946. doi: 10.1038/s41467-018-05392-1.

本文引用的文献

1
Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot.
Phys Rev Lett. 2010 Jan 8;104(1):017203. doi: 10.1103/PhysRevLett.104.017203.
2
Single-electron force readout of nanoparticle electrometers attached to carbon nanotubes.
Nano Lett. 2008 Aug;8(8):2399-404. doi: 10.1021/nl801295y. Epub 2008 Jun 26.
4
Single electron on a nanodot in a double-barrier tunneling structure observed by noncontact atomic-force spectroscopy.
Phys Rev Lett. 2006 Jan 13;96(1):016108. doi: 10.1103/PhysRevLett.96.016108. Epub 2006 Jan 12.
5
Detection of single-electron charging in an individual InAs quantum dot by noncontact atomic-force microscopy.
Phys Rev Lett. 2005 Feb 11;94(5):056802. doi: 10.1103/PhysRevLett.94.056802. Epub 2005 Feb 8.
6
Single-dot spectroscopy via elastic single-electron tunneling through a pair of coupled quantum dots.
Phys Rev Lett. 2004 Aug 6;93(6):066801. doi: 10.1103/PhysRevLett.93.066801. Epub 2004 Aug 3.
7
Real-time detection of electron tunnelling in a quantum dot.
Nature. 2003 May 22;423(6938):422-5. doi: 10.1038/nature01642.
8
Scanned probe imaging of single-electron charge states in nanotube quantum dots.
Science. 2002 May 10;296(5570):1098-101. doi: 10.1126/science.1069923.
9
Localization-delocalization transition in quantum dots.
Science. 1999 Jul 30;285(5428):715-8. doi: 10.1126/science.285.5428.715.
10
Spectroscopy of quantum levels in charge-tunable InGaAs quantum dots.
Phys Rev Lett. 1994 Oct 17;73(16):2252-2255. doi: 10.1103/PhysRevLett.73.2252.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验