Cockins Lynda, Miyahara Yoichi, Bennett Steven D, Clerk Aashish A, Studenikin Sergei, Poole Philip, Sachrajda Andrew, Grutter Peter
Department of Physics, McGill University, Montreal, Quebec, Canada.
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9496-501. doi: 10.1073/pnas.0912716107. Epub 2010 May 10.
Strong confinement of charges in few-electron systems such as in atoms, molecules, and quantum dots leads to a spectrum of discrete energy levels often shared by several degenerate states. Because the electronic structure is key to understanding their chemical properties, methods that probe these energy levels in situ are important. We show how electrostatic force detection using atomic force microscopy reveals the electronic structure of individual and coupled self-assembled quantum dots. An electron addition spectrum results from a change in cantilever resonance frequency and dissipation when an electron tunnels on/off a dot. The spectra show clear level degeneracies in isolated quantum dots, supported by the quantitative measurement of predicted temperature-dependent shifts of Coulomb blockade peaks. Scanning the surface shows that several quantum dots may reside on what topographically appears to be just one. Relative coupling strengths can be estimated from these images of grouped coupled dots.
在诸如原子、分子和量子点等少电子系统中,电荷的强限制导致了一系列离散的能级,这些能级通常由几个简并态共享。由于电子结构是理解其化学性质的关键,因此原位探测这些能级的方法很重要。我们展示了如何使用原子力显微镜进行静电力检测来揭示单个和耦合的自组装量子点的电子结构。当一个电子隧穿进/出一个量子点时,悬臂梁共振频率和耗散的变化会产生电子添加光谱。光谱显示了孤立量子点中清晰的能级简并,这得到了库仑阻塞峰预测的温度依赖性位移的定量测量的支持。扫描表面显示,几个量子点可能位于地形上看起来只是一个的位置上。可以从这些成组耦合点的图像中估计相对耦合强度。