Suppr超能文献

顺行性微管运输驱动LLC-PK1上皮细胞中的微管弯曲。

Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells.

作者信息

Bicek Andrew D, Tüzel Erkan, Demtchouk Aleksey, Uppalapati Maruti, Hancock William O, Kroll Daniel M, Odde David J

机构信息

Department of Biomedical Engineering and Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Mol Biol Cell. 2009 Jun;20(12):2943-53. doi: 10.1091/mbc.e08-09-0909. Epub 2009 Apr 29.

Abstract

Microtubules (MTs) have been proposed to act mechanically as compressive struts that resist both actomyosin contractile forces and their own polymerization forces to mechanically stabilize cell shape. To identify the origin of MT bending, we directly observed MT bending and F-actin transport dynamics in the periphery of LLC-PK1 epithelial cells. We found that F-actin is nearly stationary in these cells even as MTs are deformed, demonstrating that MT bending is not driven by actomyosin contractility. Furthermore, the inhibition of myosin II activity through the use of blebbistatin results in microtubules that are still dynamically bending. In addition, as determined by fluorescent speckle microscopy, MT polymerization rarely results, if ever, in bending. We suppressed dynamic instability using nocodazole, and we observed no qualitative change in the MT bending dynamics. Bending most often results from anterograde transport of proximal portions of the MT toward a nearly stationary distal tip. Interestingly, we found that in an in vitro kinesin-MT gliding assay, MTs buckle in a similar manner. To make quantitative comparisons, we measured curvature distributions of observed MTs and found that the in vivo and in vitro curvature distributions agree quantitatively. In addition, the measured MT curvature distribution is not Gaussian, as expected for a thermally driven semiflexible polymer, indicating that thermal forces play a minor role in MT bending. We conclude that many of the known mechanisms of MT deformation, such as polymerization and acto-myosin contractility, play an inconsequential role in mediating MT bending in LLC-PK1 cells and that MT-based molecular motors likely generate most of the strain energy stored in the MT lattice. The results argue against models in which MTs play a major mechanical role in LLC-PK1 cells and instead favor a model in which mechanical forces control the spatial distribution of the MT array.

摘要

微管(MTs)被认为在机械上起到抗压支柱的作用,可抵抗肌动球蛋白收缩力及其自身的聚合力,从而在机械上稳定细胞形状。为了确定微管弯曲的起源,我们直接观察了LLC-PK1上皮细胞周边的微管弯曲和F-肌动蛋白运输动态。我们发现,即使微管发生变形,F-肌动蛋白在这些细胞中几乎是静止的,这表明微管弯曲不是由肌动球蛋白收缩性驱动的。此外,通过使用blebbistatin抑制肌球蛋白II活性会导致微管仍然动态弯曲。另外,通过荧光斑点显微镜测定,微管聚合极少导致弯曲(如果有的话)。我们用诺考达唑抑制动态不稳定性,并且观察到微管弯曲动态没有定性变化。弯曲最常是由于微管近端部分向几乎静止的远端尖端的顺行运输导致的。有趣的是,我们发现在体外驱动蛋白-微管滑行试验中,微管以类似方式弯曲。为了进行定量比较,我们测量了观察到的微管的曲率分布,发现体内和体外的曲率分布在数量上是一致的。此外,测量的微管曲率分布不是高斯分布,而对于热驱动的半柔性聚合物来说是预期的高斯分布,这表明热力在微管弯曲中起次要作用。我们得出结论,微管变形的许多已知机制,如聚合作用和肌动蛋白-肌球蛋白收缩性,在介导LLC-PK1细胞中的微管弯曲中起无关紧要的作用,并且基于微管的分子马达可能产生存储在微管晶格中的大部分应变能。这些结果与微管在LLC-PK1细胞中起主要机械作用的模型相悖,而是支持一种机械力控制微管阵列空间分布的模型。

相似文献

1
Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells.
Mol Biol Cell. 2009 Jun;20(12):2943-53. doi: 10.1091/mbc.e08-09-0909. Epub 2009 Apr 29.
2
The crosstalk between microtubules, actin and membranes shapes cell division.
Open Biol. 2020 Mar;10(3):190314. doi: 10.1098/rsob.190314. Epub 2020 Mar 18.
3
Transient Pinning and Pulling: A Mechanism for Bending Microtubules.
PLoS One. 2016 Mar 14;11(3):e0151322. doi: 10.1371/journal.pone.0151322. eCollection 2016.
4
Spontaneous Formation of a Globally Connected Contractile Network in a Microtubule-Motor System.
Biophys J. 2016 Jul 26;111(2):373-385. doi: 10.1016/j.bpj.2016.06.010.
5
Microtubule motor Ncd induces sliding of microtubules in vivo.
Mol Biol Cell. 2007 Sep;18(9):3601-6. doi: 10.1091/mbc.e06-12-1085. Epub 2007 Jun 27.
9
Antagonistic forces generated by myosin II and cytoplasmic dynein regulate microtubule turnover, movement, and organization in interphase cells.
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8656-61. doi: 10.1073/pnas.141224198. Epub 2001 Jul 3.

引用本文的文献

1
Multi-kinesin clusters impart mechanical stress that reveals mechanisms of microtubule breakage in cells.
bioRxiv. 2025 Feb 3:2025.01.31.635950. doi: 10.1101/2025.01.31.635950.
3
Mechanical fatigue in microtubules.
Sci Rep. 2024 Nov 1;14(1):26336. doi: 10.1038/s41598-024-76409-7.
4
Microtubules composed of α4A undergo curved growth mainly mediated by its core structure.
J Mol Cell Biol. 2023 Jun 1;15(1). doi: 10.1093/jmcb/mjad004.
5
The rate of microtubule breaking increases exponentially with curvature.
Sci Rep. 2022 Dec 3;12(1):20899. doi: 10.1038/s41598-022-24912-0.
6
Kinesin-3 motors are fine-tuned at the molecular level to endow distinct mechanical outputs.
BMC Biol. 2022 Aug 10;20(1):177. doi: 10.1186/s12915-022-01370-8.
7
Microtubules in Pancreatic β Cells: Convoluted Roadways Toward Precision.
Front Cell Dev Biol. 2022 Jul 8;10:915206. doi: 10.3389/fcell.2022.915206. eCollection 2022.
8
A kinesin-1 variant reveals motor-induced microtubule damage in cells.
Curr Biol. 2022 Jun 6;32(11):2416-2429.e6. doi: 10.1016/j.cub.2022.04.020. Epub 2022 May 2.
9
Measurement of the persistence length of cytoskeletal filaments using curvature distributions.
Biophys J. 2022 May 17;121(10):1813-1822. doi: 10.1016/j.bpj.2022.04.020. Epub 2022 Apr 20.
10
Deformation of microtubules regulates translocation dynamics of kinesin.
Sci Adv. 2021 Oct 15;7(42):eabf2211. doi: 10.1126/sciadv.abf2211. Epub 2021 Oct 13.

本文引用的文献

1
Microtubule dynamics depart from the wormlike chain model.
Phys Rev Lett. 2008 Jan 18;100(2):028102. doi: 10.1103/PhysRevLett.100.028102. Epub 2008 Jan 15.
2
Prophase microtubule arrays undergo flux-like behavior in mammalian cells.
Mol Biol Cell. 2007 Oct;18(10):3993-4002. doi: 10.1091/mbc.e07-05-0420. Epub 2007 Aug 1.
3
Analysis of microtubule curvature.
Methods Cell Biol. 2007;83:237-68. doi: 10.1016/S0091-679X(07)83010-X.
4
Kinesin-5 acts as a brake in anaphase spindle elongation.
Curr Biol. 2007 Jun 19;17(12):R453-4. doi: 10.1016/j.cub.2007.05.001.
5
Hypothesis testing via integrated computer modeling and digital fluorescence microscopy.
Methods. 2007 Feb;41(2):232-7. doi: 10.1016/j.ymeth.2006.08.002.
6
A homotetrameric kinesin-5, KLP61F, bundles microtubules and antagonizes Ncd in motility assays.
Curr Biol. 2006 Dec 5;16(23):2293-302. doi: 10.1016/j.cub.2006.09.064.
7
Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length.
Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10248-10253. doi: 10.1073/pnas.0603931103. Epub 2006 Jun 26.
8
Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement.
J Cell Biol. 2006 Jun 5;173(5):733-41. doi: 10.1083/jcb.200601060.
9
Axonal transport of microtubules: the long and short of it.
Traffic. 2006 May;7(5):490-8. doi: 10.1111/j.1600-0854.2006.00392.x.
10
Microtubules cut and run.
Trends Cell Biol. 2005 Oct;15(10):518-24. doi: 10.1016/j.tcb.2005.08.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验