Suppr超能文献

双光子显微镜下的氧:聚合物囊泡作为探针载体。

Two-photon microscopy of oxygen: polymersomes as probe carrier vehicles.

机构信息

Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.

出版信息

J Phys Chem B. 2010 Nov 18;114(45):14373-82. doi: 10.1021/jp100353v. Epub 2010 May 12.

Abstract

Oxygen concentration distributions in biological systems can be imaged by the phosphorescence quenching method in combination with two-photon laser scanning microscopy. In this paper, we identified the excitation regime in which the signal of a two-photon-enhanced phosphorescent probe (Finikova, O. S.; Lebedev, A. Y.; Aprelev, A.; Troxler, T.; Gao, F.; Garnacho, C.; Muro, S.; Hochstrasser, R. M.; Vinogradov, S. A. ChemPhysChem 2008, 9, 1673-1679) is dependent quadratically on the excitation power (quadratic regime), and performed simulations that relate the photophysical properties of the probe to the imaging resolution. Further, we characterized polymersomes as a method of probe encapsulation and delivery. Photophysical and oxygen sensing properties of the probe were found unchanged when the probe is encapsulated in polymersomes. Polymersomes were found capable of sustaining high probe concentrations, thereby serving to improve the signal-to-noise ratios for oxygen detection compared to the previously employed probe delivery methods. Imaging of polymersomes loaded with the probe was used as a test-bed for a new method.

摘要

生物系统中的氧浓度分布可以通过磷光猝灭法与双光子激光扫描显微镜相结合来成像。在本文中,我们确定了双光子增强磷光探针(Finikova,O. S.;Lebedev,A. Y.;Aprelev,A.;Troxler,T.;Gao,F.;Garnacho,C.;Muro,S.;Hochstrasser,R. M.;Vinogradov,S. A. ChemPhysChem 2008,9,1673-1679)信号与激发功率呈二次依赖关系的激发状态(二次区),并进行了模拟,将探针的光物理性质与成像分辨率联系起来。此外,我们将聚合物囊泡作为探针包封和传递的方法进行了表征。当探针被包封在聚合物囊泡中时,探针的光物理和氧传感性质保持不变。聚合物囊泡能够维持高探针浓度,从而与以前使用的探针传递方法相比,提高了氧检测的信噪比。负载探针的聚合物囊泡的成像被用作新方法的测试平台。

相似文献

1
Two-photon microscopy of oxygen: polymersomes as probe carrier vehicles.
J Phys Chem B. 2010 Nov 18;114(45):14373-82. doi: 10.1021/jp100353v. Epub 2010 May 12.
2
Oxygen microscopy by two-photon-excited phosphorescence.
Chemphyschem. 2008 Aug 25;9(12):1673-9. doi: 10.1002/cphc.200800296.
3
Quantitative determination of localized tissue oxygen concentration in vivo by two-photon excitation phosphorescence lifetime measurements.
J Appl Physiol (1985). 2004 Nov;97(5):1962-9. doi: 10.1152/japplphysiol.01399.2003. Epub 2004 Jul 9.
5
Direct imaging of biological sulfur dioxide derivatives in vivo using a two-photon phosphorescent probe.
Biomaterials. 2015 Sep;63:128-36. doi: 10.1016/j.biomaterials.2015.06.014. Epub 2015 Jun 14.
6
Porous phosphorescent coordination polymers for oxygen sensing.
J Am Chem Soc. 2010 Jan 27;132(3):922-3. doi: 10.1021/ja909629f.
7
Polymeric Nanocarriers with Luminescent Colloidal Nanoplatelets as Hydrophilic and Non-Toxic Two-Photon Bioimaging Agents.
Int J Nanomedicine. 2021 May 27;16:3649-3660. doi: 10.2147/IJN.S298300. eCollection 2021.
8
Oxyphor 2P: A High-Performance Probe for Deep-Tissue Longitudinal Oxygen Imaging.
Cell Metab. 2019 Mar 5;29(3):736-744.e7. doi: 10.1016/j.cmet.2018.12.022. Epub 2019 Jan 24.

引用本文的文献

1
ECgo: All-Optical Induction of Single Endothelial Cell Injury and Capillary Occlusion in the Brain.
bioRxiv. 2025 May 30:2025.05.27.656398. doi: 10.1101/2025.05.27.656398.
2
Measurement of cerebral oxygen pressure in living mice by two-photon phosphorescence lifetime microscopy.
STAR Protoc. 2022 May 5;3(2):101370. doi: 10.1016/j.xpro.2022.101370. eCollection 2022 Jun 17.
3
Neurophotonic tools for microscopic measurements and manipulation: status report.
Neurophotonics. 2022 Jan;9(Suppl 1):013001. doi: 10.1117/1.NPh.9.S1.013001. Epub 2022 Apr 27.
4
Small Vessels Are a Big Problem in Neurodegeneration and Neuroprotection.
Front Neurol. 2019 Aug 16;10:889. doi: 10.3389/fneur.2019.00889. eCollection 2019.
5
Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair.
ACS Appl Mater Interfaces. 2019 Sep 18;11(37):33548-33558. doi: 10.1021/acsami.9b08341. Epub 2019 Sep 4.
7
Oxyphor 2P: A High-Performance Probe for Deep-Tissue Longitudinal Oxygen Imaging.
Cell Metab. 2019 Mar 5;29(3):736-744.e7. doi: 10.1016/j.cmet.2018.12.022. Epub 2019 Jan 24.
8
In vivo imaging and analysis of cerebrovascular hemodynamic responses and tissue oxygenation in the mouse brain.
Nat Protoc. 2018 Jun;13(6):1377-1402. doi: 10.1038/nprot.2018.034. Epub 2018 May 24.
9
Two-photon antenna-core oxygen probe with enhanced performance.
Anal Chem. 2014 Jun 17;86(12):5937-45. doi: 10.1021/ac501028m. Epub 2014 Jun 3.
10
Direct measurement of local oxygen concentration in the bone marrow of live animals.
Nature. 2014 Apr 10;508(7495):269-73. doi: 10.1038/nature13034. Epub 2014 Mar 2.

本文引用的文献

1
Nanostructures as analytical tools in bioassays.
Trends Analyt Chem. 2008 May;27(5):394-406. doi: 10.1016/j.trac.2008.03.006. Epub 2008 Mar 31.
3
Solar radiation at radio frequencies and its relation to sunspots.
Proc R Soc Lond A Math Phys Sci. 1947 Aug 12;190(1022):357-75. doi: 10.1098/rspa.1947.0081.
4
Optical monitoring of oxygen tension in cortical microvessels with confocal microscopy.
Opt Express. 2009 Dec 7;17(25):22341-50. doi: 10.1364/OE.17.022341.
5
Design of Metalloporphyrin-Based Dendritic Nanoprobes for Two-Photon Microscopy of Oxygen.
J Porphyr Phthalocyanines. 2008 Dec 1;12(12):1261-1269. doi: 10.1142/S1088424608000649.
7
Ratiometric single-nanoparticle oxygen sensors for biological imaging.
Angew Chem Int Ed Engl. 2009;48(15):2741-5. doi: 10.1002/anie.200805894.
8
Photoinitiated destruction of composite porphyrin-protein polymersomes.
J Am Chem Soc. 2009 Mar 25;131(11):3872-4. doi: 10.1021/ja808586q.
10
Leuko-polymersomes.
Faraday Discuss. 2008;139:129-41; discussion 213-28, 419-20. doi: 10.1039/b717821b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验