Suppr超能文献

二十一世纪生物材料面临的挑战。

Twenty-first century challenges for biomaterials.

机构信息

Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA.

出版信息

J R Soc Interface. 2010 Aug 6;7 Suppl 4(Suppl 4):S379-91. doi: 10.1098/rsif.2010.0151.focus. Epub 2010 May 19.

Abstract

During the 1960s and 1970s, a first generation of materials was specially developed for use inside the human body. These developments became the basis for the field of biomaterials. The devices made from biomaterials are called prostheses. Professor Bill Bonfield was one of the first to recognize the importance of understanding the mechanical properties of tissues, especially bone, in order to achieve reliable skeletal prostheses. His research was one of the pioneering efforts to understand the interaction of biomaterials with living tissues. The goal of all early biomaterials was to 'achieve a suitable combination of physical properties to match those of the replaced tissue with a minimal toxic response in the host'. By 1980, there were more than 50 implanted prostheses in clinical use made from 40 different materials. At that time, more than three million prosthetic parts were being implanted in patients worldwide each year. A common feature of most of the 40 materials was biological 'inertness'. Almost all materials used in the body were single-phase materials. Most implant materials were adaptations of already existing commercial materials with higher levels of purity to eliminate release of toxic by-products and minimize corrosion. This article is a tribute to Bill Bonfield's pioneering efforts in the field of bone biomechanics, biomaterials and interdisciplinary research. It is also a brief summary of the evolution of bioactive materials and the opportunities for tailoring the composition, texture and surface chemistry of them to meet five important challenges for the twenty-first century.

摘要

在 20 世纪 60 年代和 70 年代,第一代专门用于人体内部的材料被开发出来。这些发展为生物材料领域奠定了基础。由生物材料制成的装置称为假体。Bill Bonfield 教授是最早认识到理解组织(尤其是骨骼)机械性能以实现可靠骨骼假体的重要性的人之一。他的研究是理解生物材料与活体组织相互作用的开创性努力之一。所有早期生物材料的目标都是“实现物理性能的适当组合,以匹配所替代组织的性能,同时在宿主中产生最小的毒性反应”。到 1980 年,已有超过 50 种临床使用的植入式假体,由 40 种不同材料制成。当时,全球每年有超过 300 万个人工关节被植入患者体内。大多数 40 种材料的一个共同特点是生物“惰性”。几乎所有用于体内的材料都是单相材料。大多数植入材料都是已有商业材料的改良,其纯度更高,以消除有毒副产物的释放并最小化腐蚀。本文是对 Bill Bonfield 在骨生物力学、生物材料和跨学科研究领域的开创性努力的致敬。它还简要总结了生物活性材料的演变以及定制它们的组成、结构和表面化学以应对 21 世纪五个重要挑战的机会。

相似文献

1
Twenty-first century challenges for biomaterials.二十一世纪生物材料面临的挑战。
J R Soc Interface. 2010 Aug 6;7 Suppl 4(Suppl 4):S379-91. doi: 10.1098/rsif.2010.0151.focus. Epub 2010 May 19.
2
Properties of biomaterials.生物材料的特性。
J Arthroplasty. 1986;1(2):143-7. doi: 10.1016/s0883-5403(86)80053-5.
10
Biomaterial optimization in total disc arthroplasty.全椎间盘置换术中的生物材料优化
Spine (Phila Pa 1976). 2003 Oct 15;28(20):S139-52. doi: 10.1097/01.BRS.0000092214.87225.80.

引用本文的文献

5
Biomimetic Polyurethanes in Tissue Engineering.组织工程中的仿生聚氨酯
Biomimetics (Basel). 2025 Mar 17;10(3):184. doi: 10.3390/biomimetics10030184.
7
Flexible multimaterial fibers in modern biomedical applications.现代生物医学应用中的柔性多材料纤维。
Natl Sci Rev. 2024 Sep 23;11(10):nwae333. doi: 10.1093/nsr/nwae333. eCollection 2024 Oct.

本文引用的文献

1
Pathological considerations in replacement cardiac valves.人工心脏瓣膜的病理学考量
Cardiovasc Pathol. 1992 Jan-Mar;1(1):29-52. doi: 10.1016/1054-8807(92)90006-A.
2
Bioinspired materials for controlling stem cell fate.仿生材料控制干细胞命运。
Acc Chem Res. 2010 Mar 16;43(3):419-28. doi: 10.1021/ar900226q.
3
Materials engineering for immunomodulation.免疫调节用材料工程。
Nature. 2009 Nov 26;462(7272):449-60. doi: 10.1038/nature08604.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验