Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, USA.
Med Image Anal. 2010 Aug;14(4):617-29. doi: 10.1016/j.media.2010.04.007. Epub 2010 Apr 29.
In this paper we present a high-throughput system for detecting regions of carcinoma of the prostate (CaP) in HSs from radical prostatectomies (RPs) using probabilistic pairwise Markov models (PPMMs), a novel type of Markov random field (MRF). At diagnostic resolution a digitized HS can contain 80Kx70K pixels - far too many for current automated Gleason grading algorithms to process. However, grading can be separated into two distinct steps: (1) detecting cancerous regions and (2) then grading these regions. The detection step does not require diagnostic resolution and can be performed much more quickly. Thus, we introduce a CaP detection system capable of analyzing an entire digitized whole-mount HS (2x1.75cm(2)) in under three minutes (on a desktop computer) while achieving a CaP detection sensitivity and specificity of 0.87 and 0.90, respectively. We obtain this high-throughput by tailoring the system to analyze the HSs at low resolution (8microm per pixel). This motivates the following algorithm: (Step 1) glands are segmented, (Step 2) the segmented glands are classified as malignant or benign, and (Step 3) the malignant glands are consolidated into continuous regions. The classification of individual glands leverages two features: gland size and the tendency for proximate glands to share the same class. The latter feature describes a spatial dependency which we model using a Markov prior. Typically, Markov priors are expressed as the product of potential functions. Unfortunately, potential functions are mathematical abstractions, and constructing priors through their selection becomes an ad hoc procedure, resulting in simplistic models such as the Potts. Addressing this problem, we introduce PPMMs which formulate priors in terms of probability density functions, allowing the creation of more sophisticated models. To demonstrate the efficacy of our CaP detection system and assess the advantages of using a PPMM prior instead of the Potts, we alternately incorporate both priors into our algorithm and rigorously evaluate system performance, extracting statistics from over 6000 simulations run across 40 RP specimens. Perhaps the most indicative result is as follows: at a CaP sensitivity of 0.87 the accompanying false positive rates of the system when alternately employing the PPMM and Potts priors are 0.10 and 0.20, respectively.
在本文中,我们提出了一种基于概率成对马尔可夫模型 (PPMM) 的高通量系统,用于检测前列腺癌 (CaP) 在根治性前列腺切除术 (RP) 中的 HS 区域,这是一种新型的马尔可夫随机场 (MRF)。在诊断分辨率下,一个数字化的 HS 可以包含 80Kx70K 像素 - 对于当前的自动化 Gleason 分级算法来说,处理的像素太多了。然而,分级可以分为两个不同的步骤:(1) 检测癌性区域,(2) 然后对这些区域进行分级。检测步骤不需要诊断分辨率,可以更快地完成。因此,我们引入了一种能够在不到三分钟的时间内分析整个数字化的整个 HS (2x1.75cm²) 的 CaP 检测系统(在台式计算机上),同时实现了 0.87 的 CaP 检测灵敏度和 0.90 的特异性。我们通过将系统定制为在低分辨率(8μm/像素)下分析 HS 来实现这种高通量。这促使我们提出了以下算法:(步骤 1) 分割腺体,(步骤 2) 将分割的腺体分类为恶性或良性,以及 (步骤 3) 将恶性腺体合并为连续区域。单个腺体的分类利用了两个特征:腺体大小和邻近腺体具有相同类别倾向。后一个特征描述了一种空间依赖性,我们使用马尔可夫先验对其进行建模。通常,马尔可夫先验表示为势函数的乘积。不幸的是,势函数是数学抽象,通过它们的选择来构造先验成为一个专门的过程,导致像 Potts 这样的简单模型。为了解决这个问题,我们引入了 PPMM,它根据概率密度函数来表示先验,从而可以创建更复杂的模型。为了展示我们的 CaP 检测系统的功效,并评估使用 PPMM 先验而不是 Potts 先验的优势,我们交替地将这两种先验纳入我们的算法,并严格评估系统性能,从 40 个 RP 标本中超过 6000 次模拟中提取统计数据。也许最具代表性的结果如下:当以 0.87 的 CaP 灵敏度交替使用 PPMM 和 Potts 先验时,系统的伴随假阳性率分别为 0.10 和 0.20。