Suppr超能文献

DivIVA 晶体结构揭示了对膜结合至关重要的特征。

Features critical for membrane binding revealed by DivIVA crystal structure.

机构信息

MRC Laboratory of Molecular Biology, Cambridge, UK.

出版信息

EMBO J. 2010 Jun 16;29(12):1988-2001. doi: 10.1038/emboj.2010.99. Epub 2010 May 25.

Abstract

DivIVA is a conserved protein in Gram-positive bacteria that localizes at the poles and division sites, presumably through direct sensing of membrane curvature. DivIVA functions as a scaffold and is vital for septum site selection during vegetative growth and chromosome anchoring during sporulation. DivIVA deletion causes filamentous growth in Bacillus subtilis, whereas overexpression causes hyphal branching in Streptomyces coelicolor. We have determined the crystal structure of the N-terminal (Nt) domain of DivIVA, and show that it forms a parallel coiled-coil. It is capped with two unique crossed and intertwined loops, exposing hydrophobic and positively charged residues that we show here are essential for membrane binding. An intragenic suppressor introducing a positive charge restores membrane binding after mutating the hydrophobic residues. We propose that the hydrophobic residues insert into the membrane and that the positively charged residues bind to the membrane surface. A low-resolution crystal structure of the C-terminal (Ct) domain displays a curved tetramer made from two parallel coiled-coils. The Nt and Ct parts were then merged into a model of the full length, 30 nm long DivIVA protein.

摘要

DivIVA 是一种在革兰氏阳性菌中保守的蛋白质,它定位于细菌的两极和分裂部位,可能通过直接感知膜曲率发挥作用。DivIVA 作为支架发挥功能,对于营养生长过程中的隔膜位置选择以及孢子形成过程中的染色体固定至关重要。DivIVA 的缺失会导致枯草芽孢杆菌的丝状生长,而过表达则会导致链霉菌的菌丝分支。我们已经确定了 DivIVA 的 N 端(Nt)结构域的晶体结构,并表明它形成了平行的卷曲螺旋。它的两端由两个独特的交叉缠绕环封闭,暴露出我们在此处证明对膜结合至关重要的疏水性和带正电荷的残基。一个引入正电荷的基因内抑制子在突变疏水性残基后恢复了膜结合。我们提出,疏水性残基插入到膜中,而带正电荷的残基结合到膜表面。C 端(Ct)结构域的低分辨率晶体结构显示出由两个平行卷曲螺旋组成的弯曲四聚体。然后将 Nt 和 Ct 部分合并到全长 30nm 的 DivIVA 蛋白质模型中。

相似文献

1
Features critical for membrane binding revealed by DivIVA crystal structure.
EMBO J. 2010 Jun 16;29(12):1988-2001. doi: 10.1038/emboj.2010.99. Epub 2010 May 25.
2
Protein-protein interaction domains of Bacillus subtilis DivIVA.
J Bacteriol. 2013 Mar;195(5):1012-21. doi: 10.1128/JB.02171-12. Epub 2012 Dec 21.
3
Localisation of DivIVA by targeting to negatively curved membranes.
EMBO J. 2009 Aug 5;28(15):2272-82. doi: 10.1038/emboj.2009.129. Epub 2009 May 28.
7
Structural basis for interaction of DivIVA/GpsB proteins with their ligands.
Mol Microbiol. 2019 Jun;111(6):1404-1415. doi: 10.1111/mmi.14244. Epub 2019 Apr 2.
9
Domains involved in the in vivo function and oligomerization of apical growth determinant DivIVA in Streptomyces coelicolor.
FEMS Microbiol Lett. 2009 Aug;297(1):101-9. doi: 10.1111/j.1574-6968.2009.01678.x. Epub 2009 Jun 5.
10
DivIVA uses an N-terminal conserved region and two coiled-coil domains to localize and sustain the polar growth in Corynebacterium glutamicum.
FEMS Microbiol Lett. 2009 Aug;297(1):110-6. doi: 10.1111/j.1574-6968.2009.01679.x. Epub 2009 Jun 5.

引用本文的文献

1
2
Wag31, a membrane tether, is crucial for lipid homeostasis in mycobacteria.
Elife. 2025 May 22;14:RP104268. doi: 10.7554/eLife.104268.
5
FtsZ and PBP4 bind to the conformationally dynamic N-terminal domain of GpsB.
Elife. 2024 Apr 19;13:e85579. doi: 10.7554/eLife.85579.
6
Distinct dynamics and proximity networks of hub proteins at the prey-invading cell pole in a predatory bacterium.
J Bacteriol. 2024 Apr 18;206(4):e0001424. doi: 10.1128/jb.00014-24. Epub 2024 Mar 12.
7
The roles of GpsB and DivIVA in growth and division.
Front Microbiol. 2023 Aug 30;14:1241249. doi: 10.3389/fmicb.2023.1241249. eCollection 2023.
8
Rice-produced classical swine fever virus glycoprotein E2 with herringbone-dimer design to enhance immune responses.
Plant Biotechnol J. 2023 Dec;21(12):2546-2559. doi: 10.1111/pbi.14152. Epub 2023 Aug 12.
9
DivIVA Interacts with the Cell Wall Hydrolase MltG To Regulate Peptidoglycan Synthesis in Streptococcus suis.
Microbiol Spectr. 2023 Jun 15;11(3):e0475022. doi: 10.1128/spectrum.04750-22. Epub 2023 May 22.

本文引用的文献

1
Negative membrane curvature as a cue for subcellular localization of a bacterial protein.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13541-5. doi: 10.1073/pnas.0906851106. Epub 2009 Jul 28.
2
Domains involved in the in vivo function and oligomerization of apical growth determinant DivIVA in Streptomyces coelicolor.
FEMS Microbiol Lett. 2009 Aug;297(1):101-9. doi: 10.1111/j.1574-6968.2009.01678.x. Epub 2009 Jun 5.
3
DivIVA uses an N-terminal conserved region and two coiled-coil domains to localize and sustain the polar growth in Corynebacterium glutamicum.
FEMS Microbiol Lett. 2009 Aug;297(1):110-6. doi: 10.1111/j.1574-6968.2009.01679.x. Epub 2009 Jun 5.
4
Localisation of DivIVA by targeting to negatively curved membranes.
EMBO J. 2009 Aug 5;28(15):2272-82. doi: 10.1038/emboj.2009.129. Epub 2009 May 28.
5
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
6
The BAR domain superfamily: membrane-molding macromolecules.
Cell. 2009 Apr 17;137(2):191-6. doi: 10.1016/j.cell.2009.04.010.
7
Molecular mechanisms of membrane deformation by I-BAR domain proteins.
Curr Biol. 2009 Jan 27;19(2):95-107. doi: 10.1016/j.cub.2008.12.029. Epub 2009 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验