Suppr超能文献

枯草芽孢杆菌 DivIVA 的蛋白质-蛋白质相互作用结构域。

Protein-protein interaction domains of Bacillus subtilis DivIVA.

机构信息

Robert Koch Institute, FG11-Division of Bacterial Infections, Wernigerode, Germany.

出版信息

J Bacteriol. 2013 Mar;195(5):1012-21. doi: 10.1128/JB.02171-12. Epub 2012 Dec 21.

Abstract

DivIVA proteins are curvature-sensitive membrane binding proteins that recruit other proteins to the poles and the division septum. They consist of a conserved N-terminal lipid binding domain fused to a less conserved C-terminal domain. DivIVA homologues interact with different proteins involved in cell division, chromosome segregation, genetic competence, or cell wall synthesis. It is unknown how DivIVA interacts with these proteins, and we used the interaction of Bacillus subtilis DivIVA with MinJ and RacA to investigate this. MinJ is a transmembrane protein controlling division site selection, and the DNA-binding protein RacA is crucial for chromosome segregation during sporulation. Initial bacterial two-hybrid experiments revealed that the C terminus of DivIVA appears to be important for recruiting both proteins. However, the interpretation of these results is limited since it appeared that C-terminal truncations also interfere with DivIVA oligomerization. Therefore, a chimera approach was followed, making use of the fact that Listeria monocytogenes DivIVA shows normal polar localization but is not biologically active when expressed in B. subtilis. Complementation experiments with different chimeras of B. subtilis and L. monocytogenes DivIVA suggest that MinJ and RacA bind to separate DivIVA domains. Fluorescence microscopy of green fluorescent protein-tagged RacA and MinJ corroborated this conclusion and suggests that MinJ recruitment operates via the N-terminal lipid binding domain, whereas RacA interacts with the C-terminal domain. We speculate that this difference is related to the cellular compartments in which MinJ and RacA are active: the cell membrane and the cytoplasm, respectively.

摘要

DivIVA 蛋白是一种曲率感应的膜结合蛋白,它将其他蛋白募集到极点和分裂隔膜。它们由一个保守的 N 端脂质结合域融合到一个不太保守的 C 端结构域组成。DivIVA 同源物与参与细胞分裂、染色体分离、遗传能力或细胞壁合成的不同蛋白相互作用。目前尚不清楚 DivIVA 如何与这些蛋白相互作用,我们利用枯草芽孢杆菌 DivIVA 与 MinJ 和 RacA 的相互作用来研究这一点。MinJ 是一种跨膜蛋白,控制着分裂位点的选择,而 DNA 结合蛋白 RacA 在孢子形成过程中对染色体分离至关重要。最初的细菌双杂交实验表明,DivIVA 的 C 端似乎对招募这两种蛋白都很重要。然而,由于 C 端截断似乎也干扰了 DivIVA 的寡聚化,因此这些结果的解释受到限制。因此,采用了嵌合体方法,利用单核细胞增生李斯特菌 DivIVA 表现出正常的极定位但在枯草芽孢杆菌中表达时没有生物学活性这一事实。不同枯草芽孢杆菌和单核细胞增生李斯特菌 DivIVA 嵌合体的互补实验表明,MinJ 和 RacA 结合到分离的 DivIVA 结构域。绿色荧光蛋白标记的 RacA 和 MinJ 的荧光显微镜证实了这一结论,并表明 MinJ 的募集通过 N 端脂质结合域起作用,而 RacA 与 C 端结构域相互作用。我们推测这种差异与 MinJ 和 RacA 分别在细胞膜和细胞质中活跃的细胞区室有关。

相似文献

1
Protein-protein interaction domains of Bacillus subtilis DivIVA.
J Bacteriol. 2013 Mar;195(5):1012-21. doi: 10.1128/JB.02171-12. Epub 2012 Dec 21.
3
4
A function of DivIVA in Listeria monocytogenes division site selection.
Mol Microbiol. 2014 Nov;94(3):637-54. doi: 10.1111/mmi.12784. Epub 2014 Sep 23.
5
Structural basis for interaction of DivIVA/GpsB proteins with their ligands.
Mol Microbiol. 2019 Jun;111(6):1404-1415. doi: 10.1111/mmi.14244. Epub 2019 Apr 2.
6
Localisation of DivIVA by targeting to negatively curved membranes.
EMBO J. 2009 Aug 5;28(15):2272-82. doi: 10.1038/emboj.2009.129. Epub 2009 May 28.
7
Subcellular Dynamics of a Conserved Bacterial Polar Scaffold Protein.
Genes (Basel). 2022 Jan 30;13(2):278. doi: 10.3390/genes13020278.
8
MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis.
Mol Microbiol. 2008 Dec;70(5):1166-79. doi: 10.1111/j.1365-2958.2008.06469.x. Epub 2008 Oct 2.
10
Features critical for membrane binding revealed by DivIVA crystal structure.
EMBO J. 2010 Jun 16;29(12):1988-2001. doi: 10.1038/emboj.2010.99. Epub 2010 May 25.

引用本文的文献

1
3
Identification and characterization of a novel lytic peptidoglycan transglycosylase (MltC) in Shigella dysenteriae.
Braz J Microbiol. 2023 Jun;54(2):609-618. doi: 10.1007/s42770-023-00957-9. Epub 2023 Mar 27.
4
Polar protein Wag31 both activates and inhibits cell wall metabolism at the poles and septum.
Front Microbiol. 2023 Jan 12;13:1085918. doi: 10.3389/fmicb.2022.1085918. eCollection 2022.
5
Molecular Analysis of pSK1 par: A Novel Plasmid Partitioning System Encoded by Staphylococcal Multiresistance Plasmids.
J Mol Biol. 2022 Oct 15;434(19):167770. doi: 10.1016/j.jmb.2022.167770. Epub 2022 Jul 27.
6
Catching a Walker in the Act-DNA Partitioning by ParA Family of Proteins.
Front Microbiol. 2022 May 26;13:856547. doi: 10.3389/fmicb.2022.856547. eCollection 2022.
7
Clostridioides difficile Phosphoproteomics Shows an Expansion of Phosphorylated Proteins in Stationary Growth Phase.
mSphere. 2022 Feb 23;7(1):e0091121. doi: 10.1128/msphere.00911-21. Epub 2022 Jan 5.
8
Cardiolipin-Containing Lipid Membranes Attract the Bacterial Cell Division Protein DivIVA.
Int J Mol Sci. 2021 Aug 3;22(15):8350. doi: 10.3390/ijms22158350.
9
Dynamics of the Bacillus subtilis Min System.
mBio. 2021 Apr 13;12(2):e00296-21. doi: 10.1128/mBio.00296-21.
10
EF1025, a Hypothetical Protein From , Interacts With DivIVA and Affects Cell Length and Cell Shape.
Front Microbiol. 2020 Feb 12;11:83. doi: 10.3389/fmicb.2020.00083. eCollection 2020.

本文引用的文献

1
Architecturally the same, but playing a different game: the diverse species-specific roles of DivIVA proteins.
Virulence. 2012 Jul 1;3(4):406-7. doi: 10.4161/viru.20747. Epub 2012 Jun 22.
2
DivIVA-mediated polar localization of ComN, a posttranscriptional regulator of Bacillus subtilis.
J Bacteriol. 2012 Jul;194(14):3661-9. doi: 10.1128/JB.05879-11. Epub 2012 May 11.
3
Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis.
Proc Natl Acad Sci U S A. 2012 May 8;109(19):7451-6. doi: 10.1073/pnas.1117483109. Epub 2012 Apr 19.
4
Segregation of molecules at cell division reveals native protein localization.
Nat Methods. 2012 Apr 8;9(5):480-2. doi: 10.1038/nmeth.1955.
5
DivIVA affects secretion of virulence-related autolysins in Listeria monocytogenes.
Mol Microbiol. 2012 Feb;83(4):821-39. doi: 10.1111/j.1365-2958.2012.07969.x. Epub 2012 Jan 18.
6
A synthetic Escherichia coli system identifies a conserved origin tethering factor in Actinobacteria.
Mol Microbiol. 2012 Apr;84(1):105-16. doi: 10.1111/j.1365-2958.2012.08011.x. Epub 2012 Feb 28.
7
Mutational dissection of the S/T-kinase StkP reveals crucial roles in cell division of Streptococcus pneumoniae.
Mol Microbiol. 2012 Feb;83(4):746-58. doi: 10.1111/j.1365-2958.2011.07962.x. Epub 2012 Jan 11.
9
Maf acts downstream of ComGA to arrest cell division in competent cells of B. subtilis.
Mol Microbiol. 2011 Jul;81(1):23-39. doi: 10.1111/j.1365-2958.2011.07695.x. Epub 2011 Jun 7.
10
Features critical for membrane binding revealed by DivIVA crystal structure.
EMBO J. 2010 Jun 16;29(12):1988-2001. doi: 10.1038/emboj.2010.99. Epub 2010 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验