Suppr超能文献

实时低血糖预测套件结合连续血糖监测:人工胰腺的安全网。

Real-Time hypoglycemia prediction suite using continuous glucose monitoring: a safety net for the artificial pancreas.

机构信息

Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA.

出版信息

Diabetes Care. 2010 Jun;33(6):1249-54. doi: 10.2337/dc09-1487.

Abstract

OBJECTIVE

The purpose of this study was to develop an advanced algorithm that detects pending hypoglycemia and then suspends basal insulin delivery. This approach can provide a solution to the problem of nocturnal hypoglycemia, a major concern of patients with diabetes.

RESEARCH DESIGN AND METHODS

This real-time hypoglycemia prediction algorithm (HPA) combines five individual algorithms, all based on continuous glucose monitoring 1-min data. A predictive alarm is issued by a voting algorithm when a hypoglycemic event is predicted to occur in the next 35 min. The HPA system was developed using data derived from 21 Navigator studies that assessed Navigator function over 24 h in children with type 1 diabetes. We confirmed the function of the HPA using a separate dataset from 22 admissions of type 1 diabetic subjects. During these admissions, hypoglycemia was induced by gradual increases in the basal insulin infusion rate up to 180% from the subject's own baseline infusion rate. RESULTS Using a prediction horizon of 35 min, a glucose threshold of 80 mg/dl, and a voting threshold of three of five algorithms to predict hypoglycemia (defined as a FreeStyle plasma glucose readings <60 mg/dl), the HPA predicted 91% of the hypoglycemic events. When four of five algorithms were required to be positive, then 82% of the events were predicted.

CONCLUSIONS

The HPA will enable automated insulin-pump suspension in response to a pending event that has been detected prior to severe immediate complications.

摘要

目的

本研究旨在开发一种先进的算法,以检测即将发生的低血糖,并暂停基础胰岛素输注。这种方法可以解决夜间低血糖这一糖尿病患者主要关注的问题。

研究设计和方法

这种实时低血糖预测算法(HPA)结合了五种基于连续血糖监测 1 分钟数据的个体算法。当预测到接下来 35 分钟内将发生低血糖事件时,预测报警算法将发出预测警报。HPA 系统是使用来自 21 项 Navigator 研究的数据开发的,这些研究评估了 Navigator 在 24 小时内对 1 型糖尿病儿童的功能。我们使用 22 例 1 型糖尿病患者入院的单独数据集来验证 HPA 的功能。在这些住院期间,通过逐渐将基础胰岛素输注率提高到受试者自身基础输注率的 180%来诱导低血糖。

结果

使用 35 分钟的预测时间、80mg/dl 的血糖阈值和五个算法中的三个算法的投票阈值来预测低血糖(定义为 FreeStyle 血浆葡萄糖读数 <60mg/dl),HPA 预测了 91%的低血糖事件。当需要五个算法中的四个为阳性时,则可预测 82%的事件。

结论

HPA 将能够在严重的即时并发症发生之前,自动暂停胰岛素泵以应对已检测到的即将发生的事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06b7/2875433/057e5f42f4d5/zdc0041081810001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验