Hannover Medical School, Department of Experimental Hematology, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
Expert Opin Biol Ther. 2010 Jul;10(7):1089-103. doi: 10.1517/14712598.2010.496775.
The generation of induced pluripotent stem cells (iPSCs) enabled by exogenous expression of the canonical Oct4, Sox2, Klf4 and c-Myc reprogramming factors has opened new ways to create patient- or disease-specific pluripotent cells. iPSCs represent an almost inexhaustible source of cells for targeted differentiation into somatic effector cells and hence are likely to be invaluable for therapeutic applications and disease-related research.
After an introduction on the biology of reprogramming we cover emerging technological advances, including new reprogramming approaches, small-molecule compounds and tailored genetic modification, and give an outlook towards potential clinical applications of iPSCs.
Although this field is progressing rapidly, reprogramming is still an inefficient process. The reader will learn about innovative tools to generate patient-specific iPSCs and how to modify these established lines in a safe way. Ideally, the disease-causing mutation is edited directly in the genome using novel technologies based on artificial nucleases, such as zinc-finger nucleases.
Human iPSCs create fascinating options with regard to disease modeling, drug testing, developmental studies and therapeutic applications. However, important hurdles have to be taken and more efficient protocols to be established to achieve the ambitious goal of bringing iPSCs into clinical use.
通过外源表达经典的 Oct4、Sox2、Klf4 和 c-Myc 重编程因子产生诱导多能干细胞(iPSCs),为创建患者或疾病特异性多能细胞开辟了新途径。iPSCs 是一种几乎用之不竭的细胞来源,可定向分化为体细胞效应细胞,因此很可能在治疗应用和疾病相关研究中具有不可估量的价值。
在介绍重编程生物学之后,我们将介绍新兴的技术进步,包括新的重编程方法、小分子化合物和定制基因修饰,并展望 iPSCs 的潜在临床应用。
尽管该领域发展迅速,但重编程仍然是一个效率低下的过程。读者将了解生成患者特异性 iPSCs 的创新工具,以及如何以安全的方式修饰这些已建立的细胞系。理想情况下,使用基于人工核酸酶的新型技术,如锌指核酸酶,直接在基因组中编辑致病突变。
人类 iPSCs 在疾病建模、药物测试、发育研究和治疗应用方面创造了引人入胜的选择。然而,为了实现将 iPSCs 应用于临床的雄心勃勃目标,还需要克服重要的障碍并建立更有效的方案。