Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA.
J Struct Biol. 2010 Sep;171(3):256-65. doi: 10.1016/j.jsb.2010.06.004. Epub 2010 Jun 9.
Maximum-likelihood (ML) estimation has very desirable properties for reconstructing 3D volumes from noisy cryo-EM images of single macromolecular particles. Current implementations of ML estimation make use of the Expectation-Maximization (EM) algorithm or its variants. However, the EM algorithm is notoriously computation-intensive, as it involves integrals over all orientations and positions for each particle image. We present a strategy to speedup the EM algorithm using domain reduction. Domain reduction uses a coarse grid to evaluate regions in the integration domain that contribute most to the integral. The integral is evaluated with a fine grid in these regions. In the simulations reported in this paper, domain reduction gives speedups which exceed a factor of 10 in early iterations and which exceed a factor of 60 in terminal iterations.
最大似然(ML)估计对于从单分子颗粒的冷冻电镜图像中重建 3D 体积具有非常理想的特性。当前的 ML 估计实现使用期望最大化(EM)算法或其变体。然而,EM 算法由于涉及每个粒子图像的所有方向和位置的积分,因此计算量非常大。我们提出了一种使用域减少来加速 EM 算法的策略。域减少使用粗网格来评估积分域中对积分贡献最大的区域。在这些区域中,使用细网格评估积分。在本文报告的模拟中,域减少在早期迭代中提供了超过 10 倍的加速,在终端迭代中提供了超过 60 倍的加速。