Biostatistics, Clinical Research, MedMined Services, CareFusion, 400 Nickerson Road, Marlborough, MA 01752, USA.
Health Serv Res. 2010 Dec;45(6 Pt 1):1815-35. doi: 10.1111/j.1475-6773.2010.01126.x.
To develop and validate a disease-specific automated inpatient mortality risk adjustment system primarily using computerized numerical laboratory data and supplementing them with administrative data. To assess the values of additional manually abstracted data.
Using 1,271,663 discharges in 2000-2001, we derived 39 disease-specific automated clinical models with demographics, laboratory findings on admission, ICD-9 principal diagnosis subgroups, and secondary diagnosis-based chronic conditions. We then added manually abstracted clinical data to the automated clinical models (manual clinical models). We compared model discrimination, calibration, and relative contribution of each group of variables. We validated these 39 models using 1,178,561 discharges in 2004-2005.
The overall mortality was 4.6 percent (n = 58,300) and 4.0 percent (n = 47,279) for derivation and validation cohorts, respectively. Common mortality predictors included age, albumin, blood urea nitrogen or creatinine, arterial pH, white blood counts, glucose, sodium, hemoglobin, and metastatic cancer. The average c-statistic for the automated clinical models was 0.83. Adding manually abstracted variables increased the average c-statistic to 0.85 with better calibration. Laboratory results displayed the highest relative contribution in predicting mortality.
A small number of numerical laboratory results and administrative data provided excellent risk adjustment for inpatient mortality for a wide range of clinical conditions.
主要利用计算机数值实验室数据开发和验证一种疾病特异性的自动化住院患者死亡率风险调整系统,并补充管理数据。评估额外手动提取数据的价值。
使用 2000-2001 年的 1271663 次出院数据,我们得出了 39 种疾病特异性的自动化临床模型,其中包括人口统计学、入院时的实验室检查结果、ICD-9 主要诊断亚组和基于次要诊断的慢性疾病。然后,我们将手动提取的临床数据添加到自动化临床模型中(手动临床模型)。我们比较了模型的区分度、校准度和每组变量的相对贡献。我们使用 2004-2005 年的 1178561 次出院数据验证了这 39 个模型。
总的死亡率分别为 4.6%(n=58300)和 4.0%(n=47279),用于推导和验证队列。常见的死亡预测因子包括年龄、白蛋白、血尿素氮或肌酐、动脉 pH 值、白细胞计数、葡萄糖、钠、血红蛋白和转移性癌症。自动化临床模型的平均 c 统计量为 0.83。添加手动提取的变量将平均 c 统计量提高到 0.85,并且校准效果更好。实验室结果在预测死亡率方面显示出最高的相对贡献。
少量的数值实验室结果和管理数据为广泛的临床情况提供了出色的住院患者死亡率风险调整。