Suppr超能文献

利用自动化临床数据开发和验证疾病特异性风险调整系统。

Development and validation of a disease-specific risk adjustment system using automated clinical data.

机构信息

Biostatistics, Clinical Research, MedMined Services, CareFusion, 400 Nickerson Road, Marlborough, MA 01752, USA.

出版信息

Health Serv Res. 2010 Dec;45(6 Pt 1):1815-35. doi: 10.1111/j.1475-6773.2010.01126.x.

Abstract

OBJECTIVE

To develop and validate a disease-specific automated inpatient mortality risk adjustment system primarily using computerized numerical laboratory data and supplementing them with administrative data. To assess the values of additional manually abstracted data.

METHODS

Using 1,271,663 discharges in 2000-2001, we derived 39 disease-specific automated clinical models with demographics, laboratory findings on admission, ICD-9 principal diagnosis subgroups, and secondary diagnosis-based chronic conditions. We then added manually abstracted clinical data to the automated clinical models (manual clinical models). We compared model discrimination, calibration, and relative contribution of each group of variables. We validated these 39 models using 1,178,561 discharges in 2004-2005.

RESULTS

The overall mortality was 4.6 percent (n = 58,300) and 4.0 percent (n = 47,279) for derivation and validation cohorts, respectively. Common mortality predictors included age, albumin, blood urea nitrogen or creatinine, arterial pH, white blood counts, glucose, sodium, hemoglobin, and metastatic cancer. The average c-statistic for the automated clinical models was 0.83. Adding manually abstracted variables increased the average c-statistic to 0.85 with better calibration. Laboratory results displayed the highest relative contribution in predicting mortality.

CONCLUSIONS

A small number of numerical laboratory results and administrative data provided excellent risk adjustment for inpatient mortality for a wide range of clinical conditions.

摘要

目的

主要利用计算机数值实验室数据开发和验证一种疾病特异性的自动化住院患者死亡率风险调整系统,并补充管理数据。评估额外手动提取数据的价值。

方法

使用 2000-2001 年的 1271663 次出院数据,我们得出了 39 种疾病特异性的自动化临床模型,其中包括人口统计学、入院时的实验室检查结果、ICD-9 主要诊断亚组和基于次要诊断的慢性疾病。然后,我们将手动提取的临床数据添加到自动化临床模型中(手动临床模型)。我们比较了模型的区分度、校准度和每组变量的相对贡献。我们使用 2004-2005 年的 1178561 次出院数据验证了这 39 个模型。

结果

总的死亡率分别为 4.6%(n=58300)和 4.0%(n=47279),用于推导和验证队列。常见的死亡预测因子包括年龄、白蛋白、血尿素氮或肌酐、动脉 pH 值、白细胞计数、葡萄糖、钠、血红蛋白和转移性癌症。自动化临床模型的平均 c 统计量为 0.83。添加手动提取的变量将平均 c 统计量提高到 0.85,并且校准效果更好。实验室结果在预测死亡率方面显示出最高的相对贡献。

结论

少量的数值实验室结果和管理数据为广泛的临床情况提供了出色的住院患者死亡率风险调整。

相似文献

1
Development and validation of a disease-specific risk adjustment system using automated clinical data.
Health Serv Res. 2010 Dec;45(6 Pt 1):1815-35. doi: 10.1111/j.1475-6773.2010.01126.x.
2
Using electronic health record data to develop inpatient mortality predictive model: Acute Laboratory Risk of Mortality Score (ALaRMS).
J Am Med Inform Assoc. 2014 May-Jun;21(3):455-63. doi: 10.1136/amiajnl-2013-001790. Epub 2013 Oct 4.
3
Enhancement of claims data to improve risk adjustment of hospital mortality.
JAMA. 2007 Jan 3;297(1):71-6. doi: 10.1001/jama.297.1.71.
8
Modifying ICD-9-CM coding of secondary diagnoses to improve risk-adjustment of inpatient mortality rates.
Med Decis Making. 2009 Jan-Feb;29(1):69-81. doi: 10.1177/0272989X08323297. Epub 2008 Sep 23.
10
Laboratory values improve predictions of hospital mortality.
Int J Qual Health Care. 1998 Dec;10(6):491-501. doi: 10.1093/intqhc/10.6.491.

引用本文的文献

1
Assessing the Added Value of Vital Signs Extracted from Electronic Health Records in Healthcare Risk Adjustment Models.
Risk Manag Healthc Policy. 2022 Sep 5;15:1671-1682. doi: 10.2147/RMHP.S356080. eCollection 2022.
2
Predictive modeling of inpatient mortality in departments of internal medicine.
Intern Emerg Med. 2018 Mar;13(2):205-211. doi: 10.1007/s11739-017-1784-8. Epub 2017 Dec 30.
6
Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review.
J Am Med Inform Assoc. 2017 Jan;24(1):198-208. doi: 10.1093/jamia/ocw042. Epub 2016 May 17.
8
A Potential Cellular Explanation for the Increased Risk of Clostridium difficile Infection Due to Hypoalbuminemia: Reply Di Bella et al.
Infect Control Hosp Epidemiol. 2015 Dec;36(12):1480. doi: 10.1017/ice.2015.235. Epub 2015 Oct 12.
10
Predicting the risk for hospital-onset Clostridium difficile infection (HO-CDI) at the time of inpatient admission: HO-CDI risk score.
Infect Control Hosp Epidemiol. 2015 Jun;36(6):695-701. doi: 10.1017/ice.2015.37. Epub 2015 Mar 10.

本文引用的文献

1
Five next steps for a new national program for comparative-effectiveness research.
N Engl J Med. 2010 Mar 18;362(11):970-3. doi: 10.1056/NEJMp1000096. Epub 2010 Feb 17.
2
Launching HITECH.
N Engl J Med. 2010 Feb 4;362(5):382-5. doi: 10.1056/NEJMp0912825. Epub 2009 Dec 30.
3
Surgical site infections: Causative pathogens and associated outcomes.
Am J Infect Control. 2010 Mar;38(2):112-20. doi: 10.1016/j.ajic.2009.06.010. Epub 2009 Nov 3.
5
Heart failure performance measures and outcomes: real or illusory gains.
JAMA. 2009 Aug 19;302(7):792-4. doi: 10.1001/jama.2009.1180.
6
Burden of early-onset candidemia: analysis of culture-positive bloodstream infections from a large U.S. database.
Crit Care Med. 2009 Sep;37(9):2519-26; quiz 2535. doi: 10.1097/CCM.0b013e3181a0f95d.
7
The American Heart Association's principles for comparative effectiveness research: a policy statement from the American Heart Association.
Circulation. 2009 Jun 9;119(22):2955-62. doi: 10.1161/CIRCULATIONAHA.109.192518. Epub 2009 May 11.
8
Use of electronic health records in U.S. hospitals.
N Engl J Med. 2009 Apr 16;360(16):1628-38. doi: 10.1056/NEJMsa0900592. Epub 2009 Mar 25.
9
Modifying ICD-9-CM coding of secondary diagnoses to improve risk-adjustment of inpatient mortality rates.
Med Decis Making. 2009 Jan-Feb;29(1):69-81. doi: 10.1177/0272989X08323297. Epub 2008 Sep 23.
10
Reductions in mortality associated with intensive public reporting of hospital outcomes.
Am J Med Qual. 2008 Jul-Aug;23(4):279-86. doi: 10.1177/1062860608318451.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验