Suppr超能文献

基于跨模态先验的非局部图像超分辨率方法。

A non-local approach for image super-resolution using intermodality priors.

机构信息

LSIIT, UMR 7005 CNRS-Université de Strasbourg, 67412 Illkirch, France.

出版信息

Med Image Anal. 2010 Aug;14(4):594-605. doi: 10.1016/j.media.2010.04.005. Epub 2010 May 6.

Abstract

Image enhancement is of great importance in medical imaging where image resolution remains a crucial point in many image analysis algorithms. In this paper, we investigate brain hallucination (Rousseau, 2008), or generating a high-resolution brain image from an input low-resolution image, with the help of another high-resolution brain image. We propose an approach for image super-resolution by using anatomical intermodality priors from a reference image. Contrary to interpolation techniques, in order to be able to recover fine details in images, the reconstruction process is based on a physical model of image acquisition. Another contribution to this inverse problem is a new regularization approach that uses an example-based framework integrating non-local similarity constraints to handle in a better way repetitive structures and texture. The effectiveness of our approach is demonstrated by experiments on realistic Brainweb Magnetic Resonance images and on clinical images from ADNI, generating automatically high-quality brain images from low-resolution input.

摘要

图像增强在医学成像中非常重要,因为在许多图像分析算法中,图像分辨率仍然是一个关键问题。在本文中,我们研究了脑幻觉(Rousseau,2008),即通过另一张高分辨率的脑图像,从输入的低分辨率图像中生成一张高分辨率的脑图像。我们提出了一种利用参考图像中的解剖跨模态先验进行图像超分辨率的方法。与插值技术不同,为了能够在图像中恢复精细的细节,重建过程基于图像采集的物理模型。这个反问题的另一个贡献是一种新的正则化方法,它使用基于实例的框架集成非局部相似性约束,以更好地处理重复结构和纹理。我们的方法在对真实的 Brainweb 磁共振图像和 ADNI 的临床图像进行的实验中得到了验证,从低分辨率输入自动生成高质量的脑图像。

相似文献

1
A non-local approach for image super-resolution using intermodality priors.
Med Image Anal. 2010 Aug;14(4):594-605. doi: 10.1016/j.media.2010.04.005. Epub 2010 May 6.
2
SENSE reconstruction with nonlocal TV regularization.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1032-5. doi: 10.1109/IEMBS.2009.5335343.
4
New learning based super-resolution: use of DWT and IGMRF prior.
IEEE Trans Image Process. 2010 May;19(5):1201-13. doi: 10.1109/TIP.2010.2041408. Epub 2010 Jan 26.
5
A unifying approach to registration, segmentation, and intensity correction.
Med Image Comput Comput Assist Interv. 2005;8(Pt 1):310-8. doi: 10.1007/11566465_39.
6
A fast nonrigid image registration with constraints on the Jacobian using large scale constrained optimization.
IEEE Trans Med Imaging. 2008 Feb;27(2):271-81. doi: 10.1109/TMI.2007.905820.
7
Gaussian process interpolation for uncertainty estimation in image registration.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):267-74. doi: 10.1007/978-3-319-10404-1_34.
8
Reference-guided sparsifying transform design for compressive sensing MRI.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5718-21. doi: 10.1109/IEMBS.2011.6091384.
9
A fast and automatic method to correct intensity inhomogeneity in MR brain images.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):324-31. doi: 10.1007/11866763_40.
10
Hybrid spline-based multimodal registration using local measures for joint entropy and mutual information.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):607-15. doi: 10.1007/978-3-642-04268-3_75.

引用本文的文献

1
Super-Resolution MR Spectroscopic Imaging via Diffusion Models for Tumor Metabolism Mapping.
J Imaging Inform Med. 2025 Sep 2. doi: 10.1007/s10278-025-01652-x.
2
Super-resolution reconstruction for early cervical cancer magnetic resonance imaging based on deep learning.
Biomed Eng Online. 2024 Aug 22;23(1):84. doi: 10.1186/s12938-024-01281-5.
3
Super Resolution of Magnetic Resonance Images.
J Imaging. 2021 Jun 21;7(6):101. doi: 10.3390/jimaging7060101.
5
Mouse brain MR super-resolution using a deep learning network trained with optical imaging data.
Front Radiol. 2023 May 15;3:1155866. doi: 10.3389/fradi.2023.1155866. eCollection 2023.
6
Double paths network with residual information distillation for improving lung CT image super resolution.
Biomed Signal Process Control. 2022 Mar;73:103412. doi: 10.1016/j.bspc.2021.103412. Epub 2021 Dec 8.
7
Super-Resolution Hyperpolarized C Imaging of Human Brain Using Patch-Based Algorithm.
Tomography. 2020 Dec;6(4):343-355. doi: 10.18383/j.tom.2020.00037.
8
Multi-Contrast Super-Resolution MRI Through a Progressive Network.
IEEE Trans Med Imaging. 2020 Sep;39(9):2738-2749. doi: 10.1109/TMI.2020.2974858. Epub 2020 Feb 18.
9
Applications of a deep learning method for anti-aliasing and super-resolution in MRI.
Magn Reson Imaging. 2019 Dec;64:132-141. doi: 10.1016/j.mri.2019.05.038. Epub 2019 Jun 24.
10
Super-resolution reconstruction of neonatal brain magnetic resonance images via residual structured sparse representation.
Med Image Anal. 2019 Jul;55:76-87. doi: 10.1016/j.media.2019.04.010. Epub 2019 Apr 18.

本文引用的文献

1
An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images.
IEEE Trans Med Imaging. 2008 Apr;27(4):425-41. doi: 10.1109/TMI.2007.906087.
2
A new method for registration-based medical image interpolation.
IEEE Trans Med Imaging. 2008 Mar;27(3):370-7. doi: 10.1109/TMI.2007.907324.
3
Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images.
Acad Radiol. 2006 Sep;13(9):1072-81. doi: 10.1016/j.acra.2006.05.003.
4
Resolution enhancement in MRI.
Magn Reson Imaging. 2006 Feb;24(2):133-54. doi: 10.1016/j.mri.2005.09.011. Epub 2006 Jan 6.
5
Registration-based interpolation.
IEEE Trans Med Imaging. 2004 Jul;23(7):922-6. doi: 10.1109/TMI.2004.828352.
6
Survey: interpolation methods in medical image processing.
IEEE Trans Med Imaging. 1999 Nov;18(11):1049-75. doi: 10.1109/42.816070.
7
An objective comparison of 3-D image interpolation methods.
IEEE Trans Med Imaging. 1998 Aug;17(4):642-52. doi: 10.1109/42.730408.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验