Artificial Intelligence Laboratory, Department of Radiology, Mayo Clinic, 200 1st Street, SW, Rochester, MN, 55905, USA.
Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA.
J Imaging Inform Med. 2024 Oct;37(5):2015-2024. doi: 10.1007/s10278-024-01083-0. Epub 2024 Apr 1.
In recent years, the role of Artificial Intelligence (AI) in medical imaging has become increasingly prominent, with the majority of AI applications approved by the FDA being in imaging and radiology in 2023. The surge in AI model development to tackle clinical challenges underscores the necessity for preparing high-quality medical imaging data. Proper data preparation is crucial as it fosters the creation of standardized and reproducible AI models while minimizing biases. Data curation transforms raw data into a valuable, organized, and dependable resource and is a fundamental process to the success of machine learning and analytical projects. Considering the plethora of available tools for data curation in different stages, it is crucial to stay informed about the most relevant tools within specific research areas. In the current work, we propose a descriptive outline for different steps of data curation while we furnish compilations of tools collected from a survey applied among members of the Society of Imaging Informatics (SIIM) for each of these stages. This collection has the potential to enhance the decision-making process for researchers as they select the most appropriate tool for their specific tasks.
近年来,人工智能(AI)在医学影像中的作用变得越来越突出,2023 年,FDA 批准的大多数 AI 应用都在影像和放射学领域。为了应对临床挑战,AI 模型的开发呈指数级增长,这凸显了准备高质量医学影像数据的必要性。恰当的数据准备至关重要,因为它可以促进创建标准化和可重复的 AI 模型,同时最小化偏差。数据整理将原始数据转化为有价值、组织良好且可靠的资源,是机器学习和分析项目成功的基础过程。考虑到在不同阶段有大量可用于数据整理的工具,了解特定研究领域内最相关的工具至关重要。在目前的工作中,我们提出了数据整理不同步骤的描述性大纲,同时还提供了从针对成像信息学学会(SIIM)成员进行的调查中收集到的各个阶段工具的汇编。这些工具汇编有可能增强研究人员的决策过程,使他们能够为特定任务选择最合适的工具。