Suppr超能文献

Golgi 细胞的发现与再发现。

Discovery and rediscoveries of Golgi cells.

机构信息

Department of Physiology, University of Pavia, Pavia, Italy.

出版信息

J Physiol. 2010 Oct 1;588(Pt 19):3639-55. doi: 10.1113/jphysiol.2010.189605.

Abstract

When Camillo Golgi invented the black reaction in 1873 and first described the fine anatomical structure of the nervous system, he described a ‘big nerve cell’ that later took his name, the Golgi cell of cerebellum (‘Golgi’schen Zellen’, Gustaf Retzius, 1892). The Golgi cell was then proposed as the prototype of type-II interneurons, which form complex connections and exert their actions exclusively within the local network. Santiago Ramón y Cajal (who received the Nobel Prize with Golgi in 1906) proceeded to a detailed description of Golgi cell morphological characteristics, but functional insight remained very limited for many years. The first rediscovery happened in the 1960s, when neurophysiological analysis in vivo revealed that Golgi cells are inhibitory interneurons. This finding promoted the development of two major cerebellar theories, the ‘beam theory’ of John Eccles and the ‘motor learning theory’ of David Marr, in which the Golgi cells regulate the spatial organisation and the gain of input signals to be processed and learned by the cerebellar circuit. However, the matter was not set and a series of pioneering observations using single unit recordings and electronmicroscopy raised new issues that could not be fully explored until the 1990s. Then, the advent of new electrophysiological and imaging techniques in vitro and in vivo demonstrated the cellular and network activities of these neurons. Now we know that Golgi cells, through complex systems of chemical and electrical synapses, effectively control the spatio-temporal organisation of cerebellar responses. The Golgi cells regulate the timing and number of spikes emitted by granule cells and coordinate their coherent activity. Moreover, the Golgi cells regulate the induction of long-term synaptic plasticity along the mossy fibre pathway. Eventually, the Golgi cells transform the granular layer of cerebellum into an adaptable spatio-temporal filter capable of performing several kinds of logical operation. After more than a century, Golgi’s intuition that the Golgi cell had to generate under a new perspective complex ensemble effects at the network level has finally been demonstrated.

摘要

当 Camillo Golgi 于 1873 年发明黑反应并首次描述神经系统的精细解剖结构时,他描述了一种后来以他的名字命名的“大神经细胞”,即小脑的 Golgi 细胞(“Golgi’schen Zellen”,Gustaf Retzius,1892)。随后,Golgi 细胞被提议为 II 型中间神经元的原型,这些神经元形成复杂的连接,并仅在局部网络中发挥作用。Santiago Ramón y Cajal(他与 Golgi 一起于 1906 年获得诺贝尔奖)对 Golgi 细胞形态特征进行了详细描述,但多年来,功能见解仍然非常有限。第一个重新发现发生在 20 世纪 60 年代,当时体内神经生理学分析表明,Golgi 细胞是抑制性中间神经元。这一发现促进了两大小脑理论的发展,即 John Eccles 的“梁理论”和 David Marr 的“运动学习理论”,其中 Golgi 细胞调节输入信号的空间组织和增益,以便小脑回路进行处理和学习。然而,事情并没有解决,一系列使用单细胞记录和电子显微镜的开创性观察提出了一些新问题,直到 20 世纪 90 年代才能得到充分探讨。然后,体外和体内新的电生理和成像技术的出现证明了这些神经元的细胞和网络活动。现在我们知道,Golgi 细胞通过化学和电突触的复杂系统,有效地控制小脑反应的时空组织。Golgi 细胞调节颗粒细胞发射尖峰的时间和数量,并协调它们的相干活动。此外,Golgi 细胞调节苔藓纤维途径中长时程突触可塑性的诱导。最终,Golgi 细胞将小脑的颗粒层转化为能够执行多种逻辑运算的自适应时空滤波器。一个多世纪后,Golgi 的直觉——Golgi 细胞必须在网络层面产生新的视角下的复杂集合效应——终于得到了证明。

相似文献

1
Discovery and rediscoveries of Golgi cells.
J Physiol. 2010 Oct 1;588(Pt 19):3639-55. doi: 10.1113/jphysiol.2010.189605.
3
The diffuse nervous network of Camillo Golgi: facts and fiction.
Brain Res Rev. 2011 Jan 7;66(1-2):75-82. doi: 10.1016/j.brainresrev.2010.09.005. Epub 2010 Sep 16.
4
Cerebellar circuitry as a neuronal machine.
Prog Neurobiol. 2006 Feb-Apr;78(3-5):272-303. doi: 10.1016/j.pneurobio.2006.02.006.
5
How the 1906 Nobel Prize in Physiology or Medicine was shared between Golgi and Cajal.
Brain Res Rev. 2007 Oct;55(2):490-8. doi: 10.1016/j.brainresrev.2006.11.004. Epub 2007 Jan 9.
9
The cerebellar network: from structure to function and dynamics.
Brain Res Rev. 2011 Jan 7;66(1-2):5-15. doi: 10.1016/j.brainresrev.2010.10.002. Epub 2010 Oct 13.

引用本文的文献

1
Computational anatomy: the cerebellar microzone computation.
Oxf Open Neurosci. 2025 May 16;4:kvaf001. doi: 10.1093/oons/kvaf001. eCollection 2025.
2
Coincidence detection between apical and basal dendrites drives STDP in cerebellar Golgi cells.
Commun Biol. 2025 May 12;8(1):731. doi: 10.1038/s42003-025-08153-1.
3
The cerebellum converts input data into a hyper low-resolution granule cell code with spatial dimensions: a hypothesis.
R Soc Open Sci. 2025 Mar 26;12(3):241665. doi: 10.1098/rsos.241665. eCollection 2025 Mar.
4
Neuropathological correlates of vulnerability and resilience in the cerebellum in Alzheimer's disease.
Alzheimers Dement. 2025 Feb;21(2):e14428. doi: 10.1002/alz.14428. Epub 2024 Dec 23.
5
Understanding Cerebellar Input Stage through Computational and Plasticity Rules.
Biology (Basel). 2024 Jun 1;13(6):403. doi: 10.3390/biology13060403.
6
Neurotransmitter content heterogeneity within an interneuron class shapes inhibitory transmission at a central synapse.
Front Cell Neurosci. 2023 Jan 4;16:1060189. doi: 10.3389/fncel.2022.1060189. eCollection 2022.
7
An Important Step in Neuroscience: Camillo Golgi and His Discoveries.
Cells. 2022 Dec 18;11(24):4112. doi: 10.3390/cells11244112.
8
Computational models of neurotransmission at cerebellar synapses unveil the impact on network computation.
Front Comput Neurosci. 2022 Oct 28;16:1006989. doi: 10.3389/fncom.2022.1006989. eCollection 2022.
9
Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity.
PLoS Comput Biol. 2020 Dec 30;16(12):e1007937. doi: 10.1371/journal.pcbi.1007937. eCollection 2020 Dec.
10
Cerebellar Cortex 4-12 Hz Oscillations and Unit Phase Relation in the Awake Rat.
Front Syst Neurosci. 2020 Nov 10;14:475948. doi: 10.3389/fnsys.2020.475948. eCollection 2020.

本文引用的文献

1
Central effects of centripetal impulses in axons of spinal ventral roots.
J Neurophysiol. 1946 May;9:191-204. doi: 10.1152/jn.1946.9.3.191.
2
High-Pass Filtering and Dynamic Gain Regulation Enhance Vertical Bursts Transmission along the Mossy Fiber Pathway of Cerebellum.
Front Cell Neurosci. 2010 May 28;4:14. doi: 10.3389/fncel.2010.00014. eCollection 2010.
3
A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties.
Front Cell Neurosci. 2010 May 14;4:12. doi: 10.3389/fncel.2010.00012. eCollection 2010.
4
The cerebellar microcircuit as an adaptive filter: experimental and computational evidence.
Nat Rev Neurosci. 2010 Jan;11(1):30-43. doi: 10.1038/nrn2756. Epub 2009 Dec 9.
6
Cerebellar cortical organization: a one-map hypothesis.
Nat Rev Neurosci. 2009 Sep;10(9):670-81. doi: 10.1038/nrn2698.
7
Neocortical networks entrain neuronal circuits in cerebellar cortex.
J Neurosci. 2009 Aug 19;29(33):10309-20. doi: 10.1523/JNEUROSCI.2327-09.2009.
9
Tonic activation of GABAB receptors reduces release probability at inhibitory connections in the cerebellar glomerulus.
J Neurophysiol. 2009 Jun;101(6):3089-99. doi: 10.1152/jn.91190.2008. Epub 2009 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验