Suppr超能文献

基于图像的健康和疾病中心脏结构模型。

Image-based models of cardiac structure in health and disease.

机构信息

Institute for Computational Medicine and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.

Institute of Biophysics and Institute of Physiology, Medical University of Graz, Graz, Austria.

出版信息

Wiley Interdiscip Rev Syst Biol Med. 2010 Jul-Aug;2(4):489-506. doi: 10.1002/wsbm.76.

Abstract

Computational approaches to investigating the electromechanics of healthy and diseased hearts are becoming essential for the comprehensive understanding of cardiac function. In this article, we first present a brief review of existing image-based computational models of cardiac structure. We then provide a detailed explanation of a processing pipeline which we have recently developed for constructing realistic computational models of the heart from high resolution structural and diffusion tensor (DT) magnetic resonance (MR) images acquired ex vivo. The presentation of the pipeline incorporates a review of the methodologies that can be used to reconstruct models of cardiac structure. In this pipeline, the structural image is segmented to reconstruct the ventricles, normal myocardium, and infarct. A finite element mesh is generated from the segmented structural image, and fiber orientations are assigned to the elements based on DTMR data. The methods were applied to construct seven different models of healthy and diseased hearts. These models contain millions of elements, with spatial resolutions in the order of hundreds of microns, providing unprecedented detail in the representation of cardiac structure for simulation studies.

摘要

计算方法在研究健康和患病心脏的机电特性方面变得至关重要,有助于全面理解心脏功能。本文首先简要回顾现有的基于图像的心脏结构计算模型。然后,我们详细介绍了最近开发的处理管道,用于从离体获取的高分辨率结构和扩散张量 (DT) 磁共振 (MR) 图像构建真实的心脏计算模型。该处理管道的介绍结合了可用于重建心脏结构模型的方法学回顾。在该管道中,对结构图像进行分割以重建心室、正常心肌和梗死区。从分割的结构图像生成有限元网格,并根据 DTMR 数据为元素分配纤维方向。该方法应用于构建七个不同的健康和患病心脏模型。这些模型包含数百万个元素,空间分辨率为数百微米量级,为心脏结构的模拟研究提供了前所未有的细节。

相似文献

1
Image-based models of cardiac structure in health and disease.
Wiley Interdiscip Rev Syst Biol Med. 2010 Jul-Aug;2(4):489-506. doi: 10.1002/wsbm.76.
2
Image-based estimation of ventricular fiber orientations for personalized modeling of cardiac electrophysiology.
IEEE Trans Med Imaging. 2012 May;31(5):1051-60. doi: 10.1109/TMI.2012.2184799. Epub 2012 Jan 18.
3
Image-based models of cardiac structure with applications in arrhythmia and defibrillation studies.
J Electrocardiol. 2009 Mar-Apr;42(2):157.e1-10. doi: 10.1016/j.jelectrocard.2008.12.003. Epub 2009 Jan 31.
4
Novel atlas of fiber directions built from ex-vivo diffusion tensor images of porcine hearts.
Comput Methods Programs Biomed. 2020 Apr;187:105200. doi: 10.1016/j.cmpb.2019.105200. Epub 2019 Nov 14.
5
Models of cardiac electromechanics based on individual hearts imaging data: image-based electromechanical models of the heart.
Biomech Model Mechanobiol. 2011 Jun;10(3):295-306. doi: 10.1007/s10237-010-0235-5. Epub 2010 Jun 30.
7
Imaging-based integrative models of the heart: closing the loop between experiment and simulation.
Novartis Found Symp. 2002;247:129-41; discussion 141-3, 144-50, 244-52.
8
An atlas-based geometry pipeline for cardiac Hermite model construction and diffusion tensor reorientation.
Med Image Anal. 2012 Aug;16(6):1130-41. doi: 10.1016/j.media.2012.06.005. Epub 2012 Jul 6.
9
Predictive modeling of cardiac fiber orientation using the Knutsson mapping.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):50-7. doi: 10.1007/978-3-642-23629-7_7.
10
An efficient finite element approach for modeling fibrotic clefts in the heart.
IEEE Trans Biomed Eng. 2014 Mar;61(3):900-10. doi: 10.1109/TBME.2013.2292320.

引用本文的文献

1
Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation.
Physiol Rev. 2024 Jul 1;104(3):1265-1333. doi: 10.1152/physrev.00017.2023. Epub 2023 Dec 28.
2
New Challenges for Anatomists in the Era of Omics.
Diagnostics (Basel). 2023 Sep 15;13(18):2963. doi: 10.3390/diagnostics13182963.
3
Enhancing iPSC-CM Maturation Using a Matrigel-Coated Micropatterned PDMS Substrate.
Curr Protoc. 2022 Nov;2(11):e601. doi: 10.1002/cpz1.601.
4
Combined and Machine Learning Approaches Toward Predicting Arrhythmic Risk in Post-infarction Patients.
Front Physiol. 2021 Nov 8;12:745349. doi: 10.3389/fphys.2021.745349. eCollection 2021.
8
Tracing the footsteps of autophagy in computational biology.
Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa286.
9
An Introductory Overview of Image-Based Computational Modeling in Personalized Cardiovascular Medicine.
Front Bioeng Biotechnol. 2020 Sep 25;8:529365. doi: 10.3389/fbioe.2020.529365. eCollection 2020.
10
A publicly available virtual cohort of four-chamber heart meshes for cardiac electro-mechanics simulations.
PLoS One. 2020 Jun 26;15(6):e0235145. doi: 10.1371/journal.pone.0235145. eCollection 2020.

本文引用的文献

1
Generation of histo-anatomically representative models of the individual heart: tools and application.
Philos Trans A Math Phys Eng Sci. 2009 Jun 13;367(1896):2257-92. doi: 10.1098/rsta.2009.0056.
2
Towards predictive modelling of the electrophysiology of the heart.
Exp Physiol. 2009 May;94(5):563-77. doi: 10.1113/expphysiol.2008.044073. Epub 2009 Mar 6.
3
Automatically generated, anatomically accurate meshes for cardiac electrophysiology problems.
IEEE Trans Biomed Eng. 2009 May;56(5):1318-30. doi: 10.1109/TBME.2009.2014243. Epub 2009 Feb 6.
4
Image-based models of cardiac structure with applications in arrhythmia and defibrillation studies.
J Electrocardiol. 2009 Mar-Apr;42(2):157.e1-10. doi: 10.1016/j.jelectrocard.2008.12.003. Epub 2009 Jan 31.
5
Computational cardiac atlases: from patient to population and back.
Exp Physiol. 2009 May;94(5):578-96. doi: 10.1113/expphysiol.2008.044081. Epub 2008 Dec 19.
6
Three-dimensional transmural organization of perimysial collagen in the heart.
Am J Physiol Heart Circ Physiol. 2008 Sep;295(3):H1243-H1252. doi: 10.1152/ajpheart.00484.2008. Epub 2008 Jul 18.
7
Toward patient-specific myocardial models of the heart.
Heart Fail Clin. 2008 Jul;4(3):289-301. doi: 10.1016/j.hfc.2008.02.014.
8
Spatial distribution and extent of electroporation by strong internal shock in intact structurally normal and chronically infarcted rabbit hearts.
J Cardiovasc Electrophysiol. 2008 Oct;19(10):1080-9. doi: 10.1111/j.1540-8167.2008.01201.x. Epub 2008 May 9.
9
Nondestructive optical determination of fiber organization in intact myocardial wall.
Microsc Res Tech. 2008 Jul;71(7):510-6. doi: 10.1002/jemt.20579.
10
The role of mechanoelectric feedback in vulnerability to electric shock.
Prog Biophys Mol Biol. 2008 Jun-Jul;97(2-3):461-78. doi: 10.1016/j.pbiomolbio.2008.02.020. Epub 2008 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验