Suppr超能文献

界面处细胞-材料串扰的决定因素:迈向具有细胞指导功能的材料工程。

Determinants of cell-material crosstalk at the interface: towards engineering of cell instructive materials.

机构信息

Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia and Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Napoli, Italy.

出版信息

J R Soc Interface. 2012 Sep 7;9(74):2017-32. doi: 10.1098/rsif.2012.0308. Epub 2012 Jun 29.

Abstract

The development of novel biomaterials able to control cell activities and direct their fate is warranted for engineering functional biological tissues, advanced cell culture systems, single-cell diagnosis as well as for cell sorting and differentiation. It is well established that crosstalk at the cell-material interface occurs and this has a profound influence on cell behaviour. However, the complete deciphering of the cell-material communication code is still far away. A variety of material surface properties have been reported to affect the strength and the nature of the cell-material interactions, including biological cues, topography and mechanical properties. Novel experimental evidence bears out the hypothesis that these three different signals participate in the same material-cytoskeleton crosstalk pathway via adhesion plaque formation dynamics. In this review, we present the relevant findings on material-induced cell response along with the description of cell behaviour when exposed to arrays of signals-biochemical, topographical and mechanical. Finally, with the aid of literature data, we attempt to draw unifying elements of the material-cytoskeleton-cell fate chain.

摘要

新型生物材料的开发能够控制细胞活动并指导其命运,这对于工程功能性生物组织、先进的细胞培养系统、单细胞诊断以及细胞分选和分化是必要的。细胞与材料界面的相互作用已经得到充分证实,这对细胞行为有深远的影响。然而,细胞-材料通讯代码的完全破译还遥遥无期。已经有多种材料表面特性被报道会影响细胞-材料相互作用的强度和性质,包括生物线索、形貌和机械性能。新的实验证据支持了这样一种假设,即这三种不同的信号通过黏附斑形成动力学参与同一材料-细胞骨架的串扰途径。在这篇综述中,我们介绍了与材料诱导的细胞反应相关的发现,以及细胞在暴露于一系列信号(生化、形貌和机械)时的行为描述。最后,借助文献数据,我们试图总结出材料-细胞骨架-细胞命运链的统一要素。

相似文献

1
Determinants of cell-material crosstalk at the interface: towards engineering of cell instructive materials.
J R Soc Interface. 2012 Sep 7;9(74):2017-32. doi: 10.1098/rsif.2012.0308. Epub 2012 Jun 29.
2
Engineering Cell Instructive Materials To Control Cell Fate and Functions through Material Cues and Surface Patterning.
ACS Appl Mater Interfaces. 2016 Jun 22;8(24):14896-908. doi: 10.1021/acsami.5b08658. Epub 2016 Jan 4.
3
Static and Dynamic: Evolving Biomaterial Mechanical Properties to Control Cellular Mechanotransduction.
Adv Sci (Weinh). 2023 Mar;10(9):e2204594. doi: 10.1002/advs.202204594. Epub 2023 Jan 19.
4
Tuning the material-cytoskeleton crosstalk via nanoconfinement of focal adhesions.
Biomaterials. 2014 Mar;35(9):2743-51. doi: 10.1016/j.biomaterials.2013.12.023. Epub 2014 Jan 3.
5
Three-dimensionally Patterned Scaffolds Modulate the Biointerface at the Nanoscale.
Nano Lett. 2019 Aug 14;19(8):5118-5123. doi: 10.1021/acs.nanolett.9b01468. Epub 2019 Jul 3.
6
Screening Platform for Cell Contact Guidance Based on Inorganic Biomaterial Micro/nanotopographical Gradients.
ACS Appl Mater Interfaces. 2017 Sep 20;9(37):31433-31445. doi: 10.1021/acsami.7b08237. Epub 2017 Sep 1.
7
Recent progress in stem cell differentiation directed by material and mechanical cues.
Biomed Mater. 2016 Feb 2;11(1):014109. doi: 10.1088/1748-6041/11/1/014109.
8
Crosstalk between focal adhesions and material mechanical properties governs cell mechanics and functions.
Acta Biomater. 2015 Sep;23:63-71. doi: 10.1016/j.actbio.2015.05.008. Epub 2015 May 21.
9
Multifunctional Biomaterials: Combining Material Modification Strategies for Engineering of Cell-Contacting Surfaces.
ACS Appl Mater Interfaces. 2020 May 13;12(19):21342-21367. doi: 10.1021/acsami.0c01893. Epub 2020 Apr 30.
10
Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients.
Biomaterials. 2009 Oct;30(29):5433-44. doi: 10.1016/j.biomaterials.2009.06.042.

引用本文的文献

1
Insight to motor clutch model for sensing of ECM residual strain.
Mechanobiol Med. 2023 Oct 12;1(2):100025. doi: 10.1016/j.mbm.2023.100025. eCollection 2023 Dec.
2
Controlling Protein Immobilization over Poly(3-hydroxybutyrate) Microparticles Using Substrate Binding Domain from PHA Depolymerase.
Biomacromolecules. 2025 Apr 14;26(4):2529-2539. doi: 10.1021/acs.biomac.5c00010. Epub 2025 Mar 9.
3
Evaluation of the Biocompatibility of Poly(benzimidazobenzophenanthroline)(BBL) Polymer Films with Living Cells.
Small. 2025 Feb;21(5):e2404451. doi: 10.1002/smll.202404451. Epub 2024 Dec 23.
4
Amino acid surface modified bioglass: A candidate biomaterial for bone tissue engineering.
Microsc Res Tech. 2025 Jan;88(1):26-41. doi: 10.1002/jemt.24659. Epub 2024 Aug 18.
5
Dynamic azopolymeric interfaces for photoactive cell instruction.
Biophys Rev (Melville). 2020 Nov 16;1(1):011302. doi: 10.1063/5.0025175. eCollection 2020 Dec.
7
How to fix a broken heart-designing biofunctional cues for effective, environmentally-friendly cardiac tissue engineering.
Front Chem. 2023 Oct 12;11:1267018. doi: 10.3389/fchem.2023.1267018. eCollection 2023.
9
Tendon tissue engineering: An overview of biologics to promote tendon healing and repair.
J Tissue Eng. 2023 Sep 13;14:20417314231196275. doi: 10.1177/20417314231196275. eCollection 2023 Jan-Dec.

本文引用的文献

1
Cell fluidics: producing cellular streams on micropatterned synthetic surfaces.
Langmuir. 2012 Jan 10;28(1):714-21. doi: 10.1021/la204144k. Epub 2011 Dec 13.
2
Nano-stenciled RGD-gold patterns that inhibit focal contact maturation induce lamellipodia formation in fibroblasts.
PLoS One. 2011;6(9):e25459. doi: 10.1371/journal.pone.0025459. Epub 2011 Sep 27.
3
Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion.
Biomaterials. 2011 Nov;32(32):8048-57. doi: 10.1016/j.biomaterials.2011.07.035. Epub 2011 Jul 31.
4
The relative importance of topography and RGD ligand density for endothelial cell adhesion.
PLoS One. 2011;6(7):e21869. doi: 10.1371/journal.pone.0021869. Epub 2011 Jul 11.
5
Highly parallel fabrication of nanopatterned surfaces with nanoscale orthogonal biofunctionalization imprint lithography.
Nanotechnology. 2007 Apr 4;18(13):135101. doi: 10.1088/0957-4484/18/13/135101. Epub 2007 Feb 28.
6
Spatiotemporal constraints on the force-dependent growth of focal adhesions.
Biophys J. 2011 Jun 22;100(12):2883-93. doi: 10.1016/j.bpj.2011.05.023.
7
Cell interactions with hierarchically structured nano-patterned adhesive surfaces.
Soft Matter. 2009 Jan 7;5(1):72-77. doi: 10.1039/B815634D.
8
9
Nanoscale tissue engineering: spatial control over cell-materials interactions.
Nanotechnology. 2011 May 27;22(21):212001. doi: 10.1088/0957-4484/22/21/212001. Epub 2011 Mar 31.
10
Molecular architecture and function of matrix adhesions.
Cold Spring Harb Perspect Biol. 2011 May 1;3(5):a005033. doi: 10.1101/cshperspect.a005033.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验