Suppr超能文献

利用抗原多样性进行疫苗设计:衣原体 ArtJ 范例。

Exploiting antigenic diversity for vaccine design: the chlamydia ArtJ paradigm.

机构信息

Novartis Vaccines, Via Fiorentina 1, 53100 Siena, Italy.

出版信息

J Biol Chem. 2010 Sep 24;285(39):30126-38. doi: 10.1074/jbc.M110.118513. Epub 2010 Jun 30.

Abstract

We present an interdisciplinary approach that, by incorporating a range of experimental and computational techniques, allows the identification and characterization of functional/immunogenic domains. This approach has been applied to ArtJ, an arginine-binding protein whose orthologs in Chlamydiae trachomatis (CT ArtJ) and pneumoniae (CPn ArtJ) are shown to have different immunogenic properties despite a high sequence similarity (60% identity). We have solved the crystallographic structures of CT ArtJ and CPn ArtJ, which are found to display a type II transporter fold organized in two α-β domains with the arginine-binding region at their interface. Although ArtJ is considered to belong to the periplasm, we found that both domains contain regions exposed on the bacterial surface. Moreover, we show that recombinant ArtJ binds to epithelial cells in vitro, suggesting a role for ArtJ in host-cell adhesion during Chlamydia infection. Experimental epitope mapping and computational analysis of physicochemical determinants of antibody recognition revealed that immunogenic epitopes reside mainly in the terminal (D1) domain of both CPn and CT ArtJ, whereas the surface properties of the respective binding-prone regions appear sufficiently different to assume divergent immunogenic behavior. Neutralization assays revealed that sera raised against CPn ArtJ D1 partially reduce both CPn and CT infectivity in vitro, suggesting that functional antibodies directed against this domain may potentially impair chlamydial infectivity. These findings suggest that the approach presented here, combining functional and structure-based analyses of evolutionary-related antigens can be a valuable tool for the identification of cross-species immunogenic epitopes for vaccine development.

摘要

我们提出了一种跨学科的方法,通过整合一系列实验和计算技术,能够识别和描述功能/免疫原性结构域。该方法已应用于 ArtJ,一种精氨酸结合蛋白,其衣原体(CT ArtJ)和肺炎球菌(CPn ArtJ)的同源物尽管具有高度的序列相似性(60%的同一性),但具有不同的免疫原性。我们解决了 CT ArtJ 和 CPn ArtJ 的晶体结构,发现它们呈现出一种 II 型转运蛋白折叠,由两个α-β结构域组成,精氨酸结合区域位于其界面处。尽管 ArtJ 被认为属于周质,但我们发现两个结构域都包含暴露在细菌表面的区域。此外,我们表明重组 ArtJ 能够在体外与上皮细胞结合,表明 ArtJ 在衣原体感染期间在宿主细胞黏附中起作用。实验表位作图和对抗体识别的物理化学决定因素的计算分析表明,免疫原性表位主要位于 CPn 和 CT ArtJ 的末端(D1)结构域,而各自的结合倾向区域的表面特性似乎存在足够的差异,从而假设具有不同的免疫原性行为。中和试验表明,针对 CPn ArtJ D1 的血清部分降低了 CPn 和 CT 在体外的感染性,这表明针对该结构域的功能性抗体可能潜在地损害衣原体的感染性。这些发现表明,这里提出的结合进化相关抗原的功能和结构分析的方法可以成为鉴定用于疫苗开发的跨物种免疫原性表位的有价值的工具。

相似文献

1
Exploiting antigenic diversity for vaccine design: the chlamydia ArtJ paradigm.
J Biol Chem. 2010 Sep 24;285(39):30126-38. doi: 10.1074/jbc.M110.118513. Epub 2010 Jun 30.
2
The potential for vaccine development against chlamydial infection and disease.
J Infect Dis. 2000 Jun;181 Suppl 3:S538-43. doi: 10.1086/315630.
3
A CD8+ T cell heptaepitope minigene vaccine induces protective immunity against Chlamydia pneumoniae.
J Immunol. 2005 May 1;174(9):5729-39. doi: 10.4049/jimmunol.174.9.5729.
4
Chlamydial genomics and vaccine antigen discovery.
J Infect Dis. 2000 Jun;181 Suppl 3:S521-3. doi: 10.1086/315631.
5
A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane.
Cell Microbiol. 2000 Feb;2(1):35-47. doi: 10.1046/j.1462-5822.2000.00029.x.
6
Prior exposure to infection with Chlamydia pneumoniae can influence the T-cell-mediated response to Chlamydia trachomatis.
FEMS Immunol Med Microbiol. 2006 Jul;47(2):190-8. doi: 10.1111/j.1574-695X.2006.00080.x.
8
Identification of new potential vaccine candidates against Chlamydia pneumoniae by multiple screenings.
Vaccine. 2005 Jan 19;23(9):1178-88. doi: 10.1016/j.vaccine.2004.07.045.

引用本文的文献

1
Computational Epitope Prediction and Design for Antibody Development and Detection.
Methods Mol Biol. 2023;2552:255-266. doi: 10.1007/978-1-0716-2609-2_13.
2
SARS-CoV-2 Spike Protein Mutations and Escape from Antibodies: A Computational Model of Epitope Loss in Variants of Concern.
J Chem Inf Model. 2021 Sep 27;61(9):4687-4700. doi: 10.1021/acs.jcim.1c00857. Epub 2021 Sep 1.
4
Peptides for Infectious Diseases: From Probe Design to Diagnostic Microarrays.
Antibodies (Basel). 2019 Mar 12;8(1):23. doi: 10.3390/antib8010023.
5
Biophysical insights into a highly selective l-arginine-binding lipoprotein of a pathogenic treponeme.
Protein Sci. 2018 Dec;27(12):2037-2050. doi: 10.1002/pro.3510. Epub 2018 Oct 27.
6
Targeting Difficult Protein-Protein Interactions with Plain and General Computational Approaches.
Molecules. 2018 Sep 4;23(9):2256. doi: 10.3390/molecules23092256.
9
A consistent force field parameter set for zwitterionic amino acid residues.
J Mol Model. 2014 Nov;20(11):2478. doi: 10.1007/s00894-014-2478-z. Epub 2014 Oct 24.

本文引用的文献

1
A Novel Hamiltonian Replica Exchange MD Protocol to Enhance Protein Conformational Space Sampling.
J Chem Theory Comput. 2006 Mar;2(2):217-28. doi: 10.1021/ct050250b.
2
3
Prediction of protein-protein interaction sites using electrostatic desolvation profiles.
Biophys J. 2010 May 19;98(9):1921-30. doi: 10.1016/j.bpj.2009.12.4332.
4
Why is a protective antigen protective?
Hum Vaccin. 2009 Dec;5(12):872-5. doi: 10.4161/hv.9778. Epub 2009 Dec 1.
5
CT043, a protective antigen that induces a CD4+ Th1 response during Chlamydia trachomatis infection in mice and humans.
Infect Immun. 2009 Sep;77(9):4168-76. doi: 10.1128/IAI.00344-09. Epub 2009 Jul 13.
6
Comparative protein structure modeling using Modeller.
Curr Protoc Bioinformatics. 2006 Oct;Chapter 5:Unit-5.6. doi: 10.1002/0471250953.bi0506s15.
10
Proteomics characterization of outer membrane vesicles from the extraintestinal pathogenic Escherichia coli DeltatolR IHE3034 mutant.
Mol Cell Proteomics. 2008 Mar;7(3):473-85. doi: 10.1074/mcp.M700295-MCP200. Epub 2007 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验