Suppr超能文献

利用静电去溶剂化轮廓预测蛋白质-蛋白质相互作用位点。

Prediction of protein-protein interaction sites using electrostatic desolvation profiles.

机构信息

School of Engineering and Science, Jacobs University Bremen, Bremen, Germany.

出版信息

Biophys J. 2010 May 19;98(9):1921-30. doi: 10.1016/j.bpj.2009.12.4332.

Abstract

Protein-protein complex formation involves removal of water from the interface region. Surface regions with a small free energy penalty for water removal or desolvation may correspond to preferred interaction sites. A method to calculate the electrostatic free energy of placing a neutral low-dielectric probe at various protein surface positions has been designed and applied to characterize putative interaction sites. Based on solutions of the finite-difference Poisson equation, this method also includes long-range electrostatic contributions and the protein solvent boundary shape in contrast to accessible-surface-area-based solvation energies. Calculations on a large set of proteins indicate that in many cases (>90%), the known binding site overlaps with one of the six regions of lowest electrostatic desolvation penalty (overlap with the lowest desolvation region for 48% of proteins). Since the onset of electrostatic desolvation occurs even before direct protein-protein contact formation, it may help guide proteins toward the binding region in the final stage of complex formation. It is interesting that the probe desolvation properties associated with residue types were found to depend to some degree on whether the residue was outside of or part of a binding site. The probe desolvation penalty was on average smaller if the residue was part of a binding site compared to other surface locations. Applications to several antigen-antibody complexes demonstrated that the approach might be useful not only to predict protein interaction sites in general but to map potential antigenic epitopes on protein surfaces.

摘要

蛋白质-蛋白质复合物的形成涉及到从界面区域去除水分子。那些去除或脱离水分子的表面区域,其自由能变化较小,可能对应着优先的相互作用位点。本文设计了一种计算将中性低介电探针放置在各种蛋白质表面位置的静电自由能的方法,并将其应用于描述可能的相互作用位点。与基于可及表面积的溶剂化能量不同,该方法基于有限差分泊松方程的解,还包括长程静电贡献和蛋白质溶剂边界形状。对大量蛋白质的计算表明,在许多情况下(>90%),已知的结合位点与六个静电去溶剂化惩罚最低区域之一重叠(48%的蛋白质与最低去溶剂化区域重叠)。由于静电去溶剂化的发生甚至先于直接的蛋白质-蛋白质接触形成,因此它可能有助于引导蛋白质在复合物形成的最后阶段向结合区域靠拢。有趣的是,与残基类型相关的探针去溶剂化性质在某种程度上取决于该残基是位于结合位点之外还是结合位点之内。与其他表面位置相比,如果残基是结合位点的一部分,那么探针去溶剂化的惩罚就平均更小。该方法在几个抗原-抗体复合物中的应用表明,它不仅可以用于预测一般的蛋白质相互作用位点,还可以用于绘制蛋白质表面上潜在的抗原表位。

相似文献

1
Prediction of protein-protein interaction sites using electrostatic desolvation profiles.
Biophys J. 2010 May 19;98(9):1921-30. doi: 10.1016/j.bpj.2009.12.4332.
3
Solvation energy density occlusion approximation for evaluation of desolvation penalties in biomolecular interactions.
Proteins. 2001 Apr 1;43(1):12-27. doi: 10.1002/1097-0134(20010401)43:1<12::aid-prot1013>3.0.co;2-7.
4
Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
J Mol Graph Model. 2017 Mar;72:70-80. doi: 10.1016/j.jmgm.2016.12.011. Epub 2016 Dec 21.
5
Free energy landscapes of encounter complexes in protein-protein association.
Biophys J. 1999 Mar;76(3):1166-78. doi: 10.1016/S0006-3495(99)77281-4.
6
Predicting protein interaction sites: binding hot-spots in protein-protein and protein-ligand interfaces.
Bioinformatics. 2006 Jun 1;22(11):1335-42. doi: 10.1093/bioinformatics/btl079. Epub 2006 Mar 7.
7
Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
J Mol Biol. 2000 Jul 28;300(5):1335-59. doi: 10.1006/jmbi.2000.3901.
9
Determination of atomic desolvation energies from the structures of crystallized proteins.
J Mol Biol. 1997 Apr 4;267(3):707-26. doi: 10.1006/jmbi.1996.0859.
10
Computation of electrostatic complements to proteins: a case of charge stabilized binding.
Protein Sci. 1998 Jan;7(1):206-10. doi: 10.1002/pro.5560070122.

引用本文的文献

1
Computational Methods in Immunology and Vaccinology: Design and Development of Antibodies and Immunogens.
J Chem Theory Comput. 2023 Aug 22;19(16):5315-5333. doi: 10.1021/acs.jctc.3c00513. Epub 2023 Aug 1.
2
Spike protein of SARS-CoV-2 Omicron variant: An study evaluating spike interactions and immune evasion.
Front Public Health. 2022 Nov 29;10:1052241. doi: 10.3389/fpubh.2022.1052241. eCollection 2022.
3
A Comparative Study between Spanish and British SARS-CoV-2 Variants.
Curr Issues Mol Biol. 2021 Nov 16;43(3):2036-2047. doi: 10.3390/cimb43030140.
4
A Deep Learning and XGBoost-Based Method for Predicting Protein-Protein Interaction Sites.
Front Genet. 2021 Oct 26;12:752732. doi: 10.3389/fgene.2021.752732. eCollection 2021.
5
Cross-Reactive Effects of Vaccines: Heterologous Immunity between Tetanus and Chlamydia.
Vaccines (Basel). 2020 Dec 1;8(4):719. doi: 10.3390/vaccines8040719.
6
GridSolvate: A Web Server for the Prediction of Biomolecular Hydration Properties.
J Chem Inf Model. 2020 Dec 28;60(12):5907-5911. doi: 10.1021/acs.jcim.0c00779. Epub 2020 Oct 29.
7
Peptides for Infectious Diseases: From Probe Design to Diagnostic Microarrays.
Antibodies (Basel). 2019 Mar 12;8(1):23. doi: 10.3390/antib8010023.
8
Tunable Coacervation of Well-Defined Homologous Polyanions and Polycations by Local Polarity.
ACS Cent Sci. 2019 Mar 27;5(3):549-557. doi: 10.1021/acscentsci.8b00964. Epub 2019 Feb 6.

本文引用的文献

1
On the electrostatic component of protein-protein binding free energy.
PMC Biophys. 2008 Nov 5;1(1):2. doi: 10.1186/1757-5036-1-2.
2
Fundamental aspects of protein-protein association kinetics.
Chem Rev. 2009 Mar 11;109(3):839-60. doi: 10.1021/cr800373w.
3
Protein-protein docking benchmark version 3.0.
Proteins. 2008 Nov 15;73(3):705-9. doi: 10.1002/prot.22106.
4
The interface of protein-protein complexes: analysis of contacts and prediction of interactions.
Cell Mol Life Sci. 2008 Apr;65(7-8):1059-72. doi: 10.1007/s00018-007-7451-x.
5
InterProSurf: a web server for predicting interacting sites on protein surfaces.
Bioinformatics. 2007 Dec 15;23(24):3397-9. doi: 10.1093/bioinformatics/btm474. Epub 2007 Oct 12.
6
Protein-protein binding is often associated with changes in protonation state.
Proteins. 2008 Apr;71(1):81-91. doi: 10.1002/prot.21657.
7
Optimization of electrostatic interactions in protein-protein complexes.
Biophys J. 2007 Nov 15;93(10):3340-52. doi: 10.1529/biophysj.107.112367. Epub 2007 Aug 10.
8
PI2PE: protein interface/interior prediction engine.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W357-62. doi: 10.1093/nar/gkm231. Epub 2007 May 25.
9
On itinerant water molecules and detectability of protein-protein interfaces through comparative analysis of homologues.
J Mol Biol. 2007 Jun 1;369(2):584-95. doi: 10.1016/j.jmb.2007.03.057. Epub 2007 Mar 24.
10
The molecular architecture of protein-protein binding sites.
Curr Opin Struct Biol. 2007 Feb;17(1):67-76. doi: 10.1016/j.sbi.2007.01.004. Epub 2007 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验