Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA.
J Biol Chem. 2010 Sep 3;285(36):27827-38. doi: 10.1074/jbc.M110.151894. Epub 2010 Jun 30.
Coenzyme Q (ubiquinone or Q) is a crucial mitochondrial lipid required for respiratory electron transport in eukaryotes. 4-Hydroxybenozoate (4HB) is an aromatic ring precursor that forms the benzoquinone ring of Q and is used extensively to examine Q biosynthesis. However, the direct precursor compounds and enzymatic steps for synthesis of 4HB in yeast are unknown. Here we show that para-aminobenzoic acid (pABA), a well known precursor of folate, also functions as a precursor for Q biosynthesis. A hexaprenylated form of pABA (prenyl-pABA) is normally present in wild-type yeast crude lipid extracts but is absent in yeast abz1 mutants starved for pABA. A stable (13)C(6)-isotope of pABA (p- amino[aromatic-(13)C(6)]benzoic acid ([(13)C(6)]pABA)), is prenylated in either wild-type or abz1 mutant yeast to form prenyl-[(13)C(6)]pABA. We demonstrate by HPLC and mass spectrometry that yeast incubated with either [(13)C(6)]pABA or [(13)C(6)]4HB generate both (13)C(6)-demethoxy-Q (DMQ), a late stage Q biosynthetic intermediate, as well as the final product (13)C(6)-coenzyme Q. Pulse-labeling analyses show that formation of prenyl-pABA occurs within minutes and precedes the synthesis of Q. Yeast utilizing pABA as a ring precursor produce another nitrogen containing intermediate, 4-imino-DMQ(6). This intermediate is produced in small quantities in wild-type yeast cultured in standard media and in abz1 mutants supplemented with pABA. We suggest a mechanism where Schiff base-mediated deimination forms DMQ(6) quinone, thereby eliminating the nitrogen contributed by pABA. This scheme results in the convergence of the 4HB and pABA pathways in eukaryotic Q biosynthesis and has implications regarding the action of pABA-based antifolates.
辅酶 Q(泛醌或 Q)是真核生物呼吸电子传递所需的关键线粒体脂质。4-羟基苯甲酸(4HB)是芳香环前体,形成 Q 的苯醌环,广泛用于研究 Q 生物合成。然而,酵母中 4HB 合成的直接前体化合物和酶步骤尚不清楚。在这里,我们表明对氨基苯甲酸(pABA),一种已知的叶酸前体,也可以作为 Q 生物合成的前体。pABA 的六聚异戊烯基形式(prenyl-pABA)通常存在于野生型酵母粗脂质提取物中,但在 pABA 饥饿的酵母 abz1 突变体中不存在。稳定的(13)C(6)-pABA(p-氨基[芳基-(13)C(6)]苯甲酸([(13)C(6)]pABA)),在野生型或 abz1 突变酵母中被异戊烯基化,形成 prenyl-[(13)C(6)]pABA。我们通过 HPLC 和质谱证明,用 [(13)C(6)]pABA 或 [(13)C(6)]4HB 孵育的酵母均生成(13)C(6)-脱甲氧基-Q(DMQ),一种晚期 Q 生物合成中间体,以及最终产物(13)C(6)-辅酶 Q。脉冲标记分析表明,prenyl-pABA 的形成发生在数分钟内,并先于 Q 的合成。利用 pABA 作为环前体的酵母产生另一种含氮中间产物,4-亚氨基-DMQ(6)。这种中间产物在标准培养基中培养的野生型酵母和补充 pABA 的 abz1 突变体中少量产生。我们提出了一种机制,其中希夫碱介导的脱氨形成 DMQ(6)醌,从而消除了 pABA 提供的氮。该方案导致真核生物 Q 生物合成中 4HB 和 pABA 途径的收敛,并对基于 pABA 的抗叶酸剂的作用具有启示意义。