Milenković Tijana, Ng Weng Leong, Hayes Wayne, Przulj Natasa
Department of Computing, Imperial College London SW7 2AZ, UK.
Cancer Inform. 2010 Jun 30;9:121-37. doi: 10.4137/cin.s4744.
Important biological information is encoded in the topology of biological networks. Comparative analyses of biological networks are proving to be valuable, as they can lead to transfer of knowledge between species and give deeper insights into biological function, disease, and evolution. We introduce a new method that uses the Hungarian algorithm to produce optimal global alignment between two networks using any cost function. We design a cost function based solely on network topology and use it in our network alignment. Our method can be applied to any two networks, not just biological ones, since it is based only on network topology. We use our new method to align protein-protein interaction networks of two eukaryotic species and demonstrate that our alignment exposes large and topologically complex regions of network similarity. At the same time, our alignment is biologically valid, since many of the aligned protein pairs perform the same biological function. From the alignment, we predict function of yet unannotated proteins, many of which we validate in the literature. Also, we apply our method to find topological similarities between metabolic networks of different species and build phylogenetic trees based on our network alignment score. The phylogenetic trees obtained in this way bear a striking resemblance to the ones obtained by sequence alignments. Our method detects topologically similar regions in large networks that are statistically significant. It does this independent of protein sequence or any other information external to network topology.
重要的生物学信息编码在生物网络的拓扑结构中。生物网络的比较分析已被证明具有重要价值,因为它们能够促进物种间的知识转移,并能更深入地洞察生物学功能、疾病及进化。我们引入了一种新方法,该方法使用匈牙利算法,可利用任何代价函数在两个网络之间生成最优全局比对。我们设计了一种仅基于网络拓扑结构的代价函数,并将其用于网络比对。我们的方法可应用于任何两个网络,而不仅仅是生物网络,因为它仅基于网络拓扑结构。我们使用新方法对两个真核生物物种的蛋白质 - 蛋白质相互作用网络进行比对,并证明我们的比对揭示了网络相似性的大型且拓扑结构复杂的区域。同时,我们的比对在生物学上是有效的,因为许多比对的蛋白质对执行相同的生物学功能。通过比对,我们预测了尚未注释的蛋白质的功能,其中许多我们在文献中得到了验证。此外,我们应用我们的方法来发现不同物种代谢网络之间的拓扑相似性,并基于我们的网络比对分数构建系统发育树。以这种方式获得的系统发育树与通过序列比对获得的系统发育树惊人地相似。我们的方法能够检测大型网络中具有统计学意义的拓扑相似区域。它的实现独立于蛋白质序列或网络拓扑结构之外的任何其他信息。