Suppr超能文献

机器学习技术在精神分裂症中单核苷酸多态性-疾病分类模型中的应用。

Machine learning techniques for single nucleotide polymorphism--disease classification models in schizophrenia.

机构信息

Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, S/N, 15071 A Coruña, Spain.

出版信息

Molecules. 2010 Jul 12;15(7):4875-89. doi: 10.3390/molecules15074875.

Abstract

Single nucleotide polymorphisms (SNPs) can be used as inputs in disease computational studies such as pattern searching and classification models. Schizophrenia is an example of a complex disease with an important social impact. The multiple causes of this disease create the need of new genetic or proteomic patterns that can diagnose patients using biological information. This work presents a computational study of disease machine learning classification models using only single nucleotide polymorphisms at the HTR2A and DRD3 genes from Galician (Northwest Spain) schizophrenic patients. These classification models establish for the first time, to the best knowledge of the authors, a relationship between the sequence of the nucleic acid molecule and schizophrenia (Quantitative Genotype-Disease Relationships) that can automatically recognize schizophrenia DNA sequences and correctly classify between 78.3-93.8% of schizophrenia subjects when using datasets which include simulated negative subjects and a linear artificial neural network.

摘要

单核苷酸多态性(SNP)可作为疾病计算研究(如模式搜索和分类模型)的输入。精神分裂症是一种具有重要社会影响的复杂疾病的例子。这种疾病的多种原因需要新的遗传或蛋白质组学模式,以便使用生物信息来诊断患者。本工作使用来自加利西亚(西班牙西北部)精神分裂症患者的 HTR2A 和 DRD3 基因的单个核苷酸多态性,对疾病机器学习分类模型进行了计算研究。这些分类模型首次在作者的知识范围内建立了核酸分子序列与精神分裂症之间的关系(定量基因型-疾病关系),当使用包括模拟阴性受试者和线性人工神经网络的数据集时,它们可以自动识别精神分裂症 DNA 序列,并正确分类 78.3-93.8%的精神分裂症受试者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e66a/6257637/43835ac88608/molecules-15-04875-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验