Suppr超能文献

破译蛋白质序列中的隐藏信息内容:胰岛素原的折叠性取决于一条灵活的臂,该臂在成熟激素中是可有可无的。

Deciphering the hidden informational content of protein sequences: foldability of proinsulin hinges on a flexible arm that is dispensable in the mature hormone.

机构信息

Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA.

出版信息

J Biol Chem. 2010 Oct 1;285(40):30989-1001. doi: 10.1074/jbc.M110.152645. Epub 2010 Jul 27.

Abstract

Protein sequences encode both structure and foldability. Whereas the interrelationship of sequence and structure has been extensively investigated, the origins of folding efficiency are enigmatic. We demonstrate that the folding of proinsulin requires a flexible N-terminal hydrophobic residue that is dispensable for the structure, activity, and stability of the mature hormone. This residue (Phe(B1) in placental mammals) is variably positioned within crystal structures and exhibits (1)H NMR motional narrowing in solution. Despite such flexibility, its deletion impaired insulin chain combination and led in cell culture to formation of non-native disulfide isomers with impaired secretion of the variant proinsulin. Cellular folding and secretion were maintained by hydrophobic substitutions at B1 but markedly perturbed by polar or charged side chains. We propose that, during folding, a hydrophobic side chain at B1 anchors transient long-range interactions by a flexible N-terminal arm (residues B1-B8) to mediate kinetic or thermodynamic partitioning among disulfide intermediates. Evidence for the overall contribution of the arm to folding was obtained by alanine scanning mutagenesis. Together, our findings demonstrate that efficient folding of proinsulin requires N-terminal sequences that are dispensable in the native state. Such arm-dependent folding can be abrogated by mutations associated with β-cell dysfunction and neonatal diabetes mellitus.

摘要

蛋白质序列既编码结构又编码可折叠性。尽管序列和结构的相互关系已经得到了广泛的研究,但折叠效率的起源仍然是个谜。我们证明,胰岛素原的折叠需要一个灵活的 N 端疏水性残基,该残基对于成熟激素的结构、活性和稳定性是可有可无的。这个残基(在胎盘哺乳动物中为 Phe(B1))在晶体结构中位置不同,在溶液中表现出 (1)H NMR 运动变窄。尽管如此灵活,其缺失会损害胰岛素链的组合,并在细胞培养中导致形成非天然的二硫键异构体,从而损害变体胰岛素原的分泌。细胞折叠和分泌通过 B1 处的疏水性取代得以维持,但显著受到 B1 处的极性或带电侧链的干扰。我们提出,在折叠过程中,B1 处的疏水性侧链通过灵活的 N 端臂(残基 B1-B8)锚定瞬时的长程相互作用,以介导二硫键中间体之间的动力学或热力学分配。通过丙氨酸扫描诱变获得了臂对折叠的整体贡献的证据。总之,我们的发现表明,胰岛素原的有效折叠需要在天然状态下可有可无的 N 端序列。这种臂依赖性折叠可以被与β细胞功能障碍和新生儿糖尿病相关的突变所破坏。

相似文献

2
Solution structure of proinsulin: connecting domain flexibility and prohormone processing.
J Biol Chem. 2010 Mar 12;285(11):7847-51. doi: 10.1074/jbc.C109.084921. Epub 2010 Jan 27.
3
A conserved histidine in insulin is required for the foldability of human proinsulin: structure and function of an ALAB5 analog.
J Biol Chem. 2006 Aug 25;281(34):24889-99. doi: 10.1074/jbc.M602617200. Epub 2006 May 25.
4
Diabetes mellitus due to the toxic misfolding of proinsulin variants.
FEBS Lett. 2013 Jun 27;587(13):1942-50. doi: 10.1016/j.febslet.2013.04.044. Epub 2013 May 10.
5
Crystal structure of a "nonfoldable" insulin: impaired folding efficiency despite native activity.
J Biol Chem. 2009 Dec 11;284(50):35259-72. doi: 10.1074/jbc.M109.046888. Epub 2009 Oct 22.
7
Mini-proinsulin and mini-IGF-I: homologous protein sequences encoding non-homologous structures.
J Mol Biol. 1998 Mar 20;277(1):103-18. doi: 10.1006/jmbi.1997.1574.
8
Evolution of insulin at the edge of foldability and its medical implications.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29618-29628. doi: 10.1073/pnas.2010908117. Epub 2020 Nov 5.
9
Diabetes-Associated Mutations in Proinsulin Provide a "Molecular Rheostat" of Nascent Foldability.
Curr Diab Rep. 2022 Feb;22(2):85-94. doi: 10.1007/s11892-022-01447-2. Epub 2022 Feb 4.
10
Peptide Model of the Mutant Proinsulin Syndrome. I. Design and Clinical Correlation.
Front Endocrinol (Lausanne). 2022 Mar 1;13:821069. doi: 10.3389/fendo.2022.821069. eCollection 2022.

引用本文的文献

1
Exploring proinsulin proteostasis: insights into beta cell health and diabetes.
Front Mol Biosci. 2025 Mar 5;12:1554717. doi: 10.3389/fmolb.2025.1554717. eCollection 2025.
2
Regulated processing and secretion of a peptide precursor in cilia.
Proc Natl Acad Sci U S A. 2022 Aug 2;119(31):e2206098119. doi: 10.1073/pnas.2206098119. Epub 2022 Jul 25.
3
Structural Lessons From the Mutant Proinsulin Syndrome.
Front Endocrinol (Lausanne). 2021 Sep 30;12:754693. doi: 10.3389/fendo.2021.754693. eCollection 2021.
4
Predisposition to Proinsulin Misfolding as a Genetic Risk to Diet-Induced Diabetes.
Diabetes. 2021 Nov;70(11):2580-2594. doi: 10.2337/db21-0422. Epub 2021 Aug 30.
6
Evolution of insulin at the edge of foldability and its medical implications.
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29618-29628. doi: 10.1073/pnas.2010908117. Epub 2020 Nov 5.
8
"Register-shift" insulin analogs uncover constraints of proteotoxicity in protein evolution.
J Biol Chem. 2020 Mar 6;295(10):3080-3098. doi: 10.1074/jbc.RA119.011389. Epub 2020 Jan 31.
9
Biosynthesis, structure, and folding of the insulin precursor protein.
Diabetes Obes Metab. 2018 Sep;20 Suppl 2(Suppl 2):28-50. doi: 10.1111/dom.13378.
10
Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes.
Mol Aspects Med. 2015 Apr;42:105-18. doi: 10.1016/j.mam.2015.01.001. Epub 2015 Jan 8.

本文引用的文献

1
An Achilles' heel in an amyloidogenic protein and its repair: insulin fibrillation and therapeutic design.
J Biol Chem. 2010 Apr 2;285(14):10806-21. doi: 10.1074/jbc.M109.067850. Epub 2010 Jan 27.
2
Solution structure of proinsulin: connecting domain flexibility and prohormone processing.
J Biol Chem. 2010 Mar 12;285(11):7847-51. doi: 10.1074/jbc.C109.084921. Epub 2010 Jan 27.
5
Crystal structure of a "nonfoldable" insulin: impaired folding efficiency despite native activity.
J Biol Chem. 2009 Dec 11;284(50):35259-72. doi: 10.1074/jbc.M109.046888. Epub 2009 Oct 22.
6
Proinsulin and the genetics of diabetes mellitus.
J Biol Chem. 2009 Jul 17;284(29):19159-63. doi: 10.1074/jbc.R109.009936. Epub 2009 Apr 24.
7
Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes?
Diabetologia. 2008 Jul;51(7):1100-10. doi: 10.1007/s00125-008-1025-9. Epub 2008 May 27.
8
The structure of a mutant insulin uncouples receptor binding from protein allostery. An electrostatic block to the TR transition.
J Biol Chem. 2008 Jul 25;283(30):21198-210. doi: 10.1074/jbc.M800235200. Epub 2008 May 20.
10
Mutations in the insulin gene can cause MODY and autoantibody-negative type 1 diabetes.
Diabetes. 2008 Apr;57(4):1131-5. doi: 10.2337/db07-1467. Epub 2008 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验