Csizi K-S, Frackowiak A E, Lovchik R D, Lörtscher E
IBM Research Europe-Zurich, Säumerstrasse 3, CH-8804 Rüschlikon, Switzerland.
Biomicrofluidics. 2025 May 2;19(3):031302. doi: 10.1063/5.0244129. eCollection 2025 May.
Silicon-based microfluidics enable the creation of highly complex, three-dimensional fluid networks. These comprise scalable channel sizes and monolithically integrated functionalities available from complementary-metal-oxide-semiconductor technology. On this versatile, solid-state platform, advanced manufacturing techniques exist that allow the channel walls to be directly electrified with one or multiple pairs of electrodes along the fluid-carrying channel. The electrodes have ideal electrostatic geometries, yielding homogeneous electric field distributions across the entire cross section of the microfluidic channel. As these are located directly at the channel, only low supply voltages are needed to achieve suitable field strengths. Furthermore, a controlled supply of charge carriers to the microfluidic channel is feasible. These configurations may serve numerous applications, including highly efficient mechanisms to manipulate droplets, cells, and molecular compounds, perform pico-injection or poration, trigger and control chemical reactions, or realize electrochemical and capacitive sensing modalities. In this perspective, we describe the generic design and fabrication of these electrodes and discuss their miniaturization and scaling properties. Furthermore, we forecast novel use cases and discuss challenges in the context of the most interesting applications.
基于硅的微流体技术能够创建高度复杂的三维流体网络。这些网络具有可扩展的通道尺寸以及互补金属氧化物半导体技术所具备的单片集成功能。在这个多功能的固态平台上,存在先进的制造技术,可使通道壁沿着流体输送通道通过一对或多对电极直接带电。电极具有理想的静电几何形状,能在微流体通道的整个横截面上产生均匀的电场分布。由于这些电极直接位于通道处,只需低供电电压就能实现合适的场强。此外,向微流体通道可控地供应电荷载流子是可行的。这些配置可用于众多应用,包括用于操纵液滴、细胞和分子化合物的高效机制、进行皮升注射或打孔、触发和控制化学反应,或实现电化学和电容式传感模式。从这个角度出发,我们描述这些电极的通用设计和制造,并讨论它们的小型化和缩放特性。此外,我们预测新的用例,并在最有趣的应用背景下讨论挑战。