Suppr超能文献

用于心脏组织工程的手风琴状蜂窝支架的有限元分析。

Finite element analysis of an accordion-like honeycomb scaffold for cardiac tissue engineering.

机构信息

Tissue Engineering and Regenerative Medicine Laboratory, Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

J Biomech. 2010 Nov 16;43(15):3035-43. doi: 10.1016/j.jbiomech.2010.06.032. Epub 2010 Jul 31.

Abstract

Optimizing the function of tissue engineered cardiac muscle is becoming more feasible with the development of microfabricated scaffolds amenable to mathematical modeling. In the current study, the elastic behavior of a recently developed poly(glycerol sebacate) (PGS) accordion-like honeycomb (ALH) scaffold [Engelmayr et al., 2008. Nature Materials 7 (12), 1003-1010] was analyzed. Specifically, 2D finite element (FE) models of the ALH unit cell (periodic boundary conditions) and tessellations (kinematic uniform boundary conditions) were utilized to determine a representative volume element (RVE) and to retrospectively predict the elastic effective stiffnesses. An RVE of 90 ALH unit cells (≃3.18×4.03mm) was found, indicating that previous experimental uni-axial test samples were mechanically representative. For ALH scaffolds microfabricated from PGS cured 7.5h at 160°C, FE predicted effective stiffnesses in the two orthogonal material directions (0.081±0.012 and 0.033±0.005MPa) matched published experimental data (0.083±0.004 and 0.031±0.002MPa) within 2.4% and 6.4%. Of potential use as a design criterion, model predicted global strain amplifications were lower in ALH (0.54 and 0.34) versus rectangular honeycomb (1.19 and 0.74) scaffolds, appearing to be inversely correlated with previously measured strains-to-failure. Important in matching the anisotropic mechanical properties of native cardiac muscle, FE predicted ALH scaffolds with 50μm wide PGS struts to be maximally anisotropic. The FE model will thus be useful in designing future variants of the ALH pore geometry that simultaneously provide proper cardiac anisotropy and reduced stiffness to enhance heart cell-mediated contractility.

摘要

随着适用于数学建模的微制造支架的发展,使组织工程心肌的功能优化变得更加可行。在目前的研究中,分析了最近开发的聚(癸二酸丙二醇酯)(PGS)手风琴式蜂窝(ALH)支架[Engelmayr 等人,2008. Nature Materials 7(12),1003-1010]的弹性行为。具体来说,利用 ALH 单元胞(周期性边界条件)和镶嵌(运动均匀边界条件)的 2D 有限元(FE)模型来确定代表性体积元(RVE)并回顾性地预测弹性有效刚度。发现 90 个 ALH 单元胞(≈3.18×4.03mm)的 RVE,表明以前的实验单轴测试样品在机械上具有代表性。对于在 160°C 下固化 7.5 小时的 PGS 微制造的 ALH 支架,FE 在两个正交材料方向上预测的有效刚度(0.081±0.012 和 0.033±0.005MPa)与发表的实验数据(0.083±0.004 和 0.031±0.002MPa)匹配在 2.4%和 6.4%以内。作为设计标准,模型预测的 ALH 中的全局应变放大率较低(0.54 和 0.34),而矩形蜂窝(1.19 和 0.74)支架,似乎与以前测量的失效应变呈反比。与天然心肌的各向异性机械性能匹配很重要,FE 预测具有 50μm 宽 PGS 支柱的 ALH 支架具有最大的各向异性。因此,FE 模型将有助于设计具有适当心脏各向异性和降低刚度以增强心脏细胞介导的收缩性的 ALH 孔几何形状的未来变体。

相似文献

1
Finite element analysis of an accordion-like honeycomb scaffold for cardiac tissue engineering.
J Biomech. 2010 Nov 16;43(15):3035-43. doi: 10.1016/j.jbiomech.2010.06.032. Epub 2010 Jul 31.
2
Laser microfabricated poly(glycerol sebacate) scaffolds for heart valve tissue engineering.
J Biomed Mater Res A. 2013 Jan;101(1):104-14. doi: 10.1002/jbm.a.34305. Epub 2012 Jul 24.
3
Three-dimensional elastomeric scaffolds designed with cardiac-mimetic structural and mechanical features.
Tissue Eng Part A. 2013 Mar;19(5-6):793-807. doi: 10.1089/ten.tea.2012.0330. Epub 2012 Nov 28.
4
Accordion-like honeycombs for tissue engineering of cardiac anisotropy.
Nat Mater. 2008 Dec;7(12):1003-10. doi: 10.1038/nmat2316. Epub 2008 Nov 2.
5
PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues.
Biomaterials. 2013 Sep;34(27):6355-66. doi: 10.1016/j.biomaterials.2013.04.045. Epub 2013 Jun 6.
6
The significance of pore microarchitecture in a multi-layered elastomeric scaffold for contractile cardiac muscle constructs.
Biomaterials. 2011 Mar;32(7):1856-64. doi: 10.1016/j.biomaterials.2010.11.032. Epub 2010 Dec 8.
7
Mechanical characterization and non-linear elastic modeling of poly(glycerol sebacate) for soft tissue engineering.
J Mech Behav Biomed Mater. 2012 Jul;11:3-15. doi: 10.1016/j.jmbbm.2011.11.003. Epub 2011 Nov 20.
8
Fabrication of a mechanically anisotropic poly(glycerol sebacate) membrane for tissue engineering.
J Biomed Mater Res B Appl Biomater. 2018 Feb;106(2):760-770. doi: 10.1002/jbm.b.33876. Epub 2017 Mar 27.
9
Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
J Mater Sci Mater Med. 2019 Apr 29;30(5):53. doi: 10.1007/s10856-019-6257-3.

引用本文的文献

1
3D bioprinting in cardiac tissue engineering.
Theranostics. 2021 Jul 6;11(16):7948-7969. doi: 10.7150/thno.61621. eCollection 2021.
2
A continuum model and simulations for large deformation of anisotropic fiber-matrix composites for cardiac tissue engineering.
J Mech Behav Biomed Mater. 2021 Sep;121:104627. doi: 10.1016/j.jmbbm.2021.104627. Epub 2021 Jun 7.
3
A Meshfree Representation for Cardiac Medical Image Computing.
IEEE J Transl Eng Health Med. 2018 Jan 18;6:1800212. doi: 10.1109/JTEHM.2018.2795022. eCollection 2018.
4
Bioactive Glass Fiber-Reinforced PGS Matrix Composites for Cartilage Regeneration.
Materials (Basel). 2017 Jan 20;10(1):83. doi: 10.3390/ma10010083.
5
From single fiber to macro-level mechanics: A structural finite-element model for elastomeric fibrous biomaterials.
J Mech Behav Biomed Mater. 2014 Nov;39:146-61. doi: 10.1016/j.jmbbm.2014.07.016. Epub 2014 Aug 1.
6
3D structural patterns in scalable, elastomeric scaffolds guide engineered tissue architecture.
Adv Mater. 2013 Aug 27;25(32):4459-65. doi: 10.1002/adma.201301016. Epub 2013 Jun 14.
7
Three-dimensional elastomeric scaffolds designed with cardiac-mimetic structural and mechanical features.
Tissue Eng Part A. 2013 Mar;19(5-6):793-807. doi: 10.1089/ten.tea.2012.0330. Epub 2012 Nov 28.
8
Laser microfabricated poly(glycerol sebacate) scaffolds for heart valve tissue engineering.
J Biomed Mater Res A. 2013 Jan;101(1):104-14. doi: 10.1002/jbm.a.34305. Epub 2012 Jul 24.
9
The significance of pore microarchitecture in a multi-layered elastomeric scaffold for contractile cardiac muscle constructs.
Biomaterials. 2011 Mar;32(7):1856-64. doi: 10.1016/j.biomaterials.2010.11.032. Epub 2010 Dec 8.
10
Combined technologies for microfabricating elastomeric cardiac tissue engineering scaffolds.
Macromol Biosci. 2010 Nov 10;10(11):1330-7. doi: 10.1002/mabi.201000165.

本文引用的文献

1
Advanced material strategies for tissue engineering scaffolds.
Adv Mater. 2009 Sep 4;21(32-33):3410-8. doi: 10.1002/adma.200900303.
2
Scaffold design and manufacturing: from concept to clinic.
Adv Mater. 2009 Sep 4;21(32-33):3330-42. doi: 10.1002/adma.200802977.
4
Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering.
Acta Biomater. 2010 Jun;6(6):2028-34. doi: 10.1016/j.actbio.2009.12.033. Epub 2009 Dec 22.
5
Influence of substrate stiffness on the phenotype of heart cells.
Biotechnol Bioeng. 2010 Apr 15;105(6):1148-60. doi: 10.1002/bit.22647.
6
Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat.
Am J Physiol Heart Circ Physiol. 2010 Jan;298(1):H221-8. doi: 10.1152/ajpheart.00495.2009. Epub 2009 Nov 6.
7
Challenges in cardiac tissue engineering.
Tissue Eng Part B Rev. 2010 Apr;16(2):169-87. doi: 10.1089/ten.TEB.2009.0352.
8
Novel micropatterned cardiac cell cultures with realistic ventricular microstructure.
Biophys J. 2009 May 6;96(9):3873-85. doi: 10.1016/j.bpj.2009.02.019.
9
Electrical stimulation systems for cardiac tissue engineering.
Nat Protoc. 2009;4(2):155-73. doi: 10.1038/nprot.2008.183.
10
Degradation behavior of poly(glycerol sebacate).
J Biomed Mater Res A. 2009 Dec 15;91(4):1038-47. doi: 10.1002/jbm.a.32327.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验