Suppr超能文献

固氮豌豆类菌体中的脂肪生成与氧化还原平衡

Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids.

作者信息

Terpolilli Jason J, Masakapalli Shyam K, Karunakaran Ramakrishnan, Webb Isabel U C, Green Rob, Watmough Nicholas J, Kruger Nicholas J, Ratcliffe R George, Poole Philip S

机构信息

Centre for Rhizobium Studies, Murdoch University, Perth, Australia Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom.

Department of Plant Sciences, University of Oxford, Oxford, United Kingdom.

出版信息

J Bacteriol. 2016 Sep 22;198(20):2864-75. doi: 10.1128/JB.00451-16. Print 2016 Oct 15.

Abstract

UNLABELLED

Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the tricarboxylic acid (TCA) cycle to generate NAD(P)H for reduction of N2 Metabolic flux analysis of laboratory-grown Rhizobium leguminosarum showed that the flux from [(13)C]succinate was consistent with respiration of an obligate aerobe growing on a TCA cycle intermediate as the sole carbon source. However, the instability of fragile pea bacteroids prevented their steady-state labeling under N2-fixing conditions. Therefore, comparative metabolomic profiling was used to compare free-living R. leguminosarum with pea bacteroids. While the TCA cycle was shown to be essential for maximal rates of N2 fixation, levels of pyruvate (5.5-fold reduced), acetyl coenzyme A (acetyl-CoA; 50-fold reduced), free coenzyme A (33-fold reduced), and citrate (4.5-fold reduced) were much lower in bacteroids. Instead of completely oxidizing acetyl-CoA, pea bacteroids channel it into both lipid and the lipid-like polymer poly-β-hydroxybutyrate (PHB), the latter via a type III PHB synthase that is active only in bacteroids. Lipogenesis may be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Direct reduction by NAD(P)H of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance the production of NAD(P)H from oxidation of acetyl-CoA in the TCA cycle with its storage in PHB and lipids.

IMPORTANCE

Biological nitrogen fixation by symbiotic bacteria (rhizobia) in legume root nodules is an energy-expensive process. Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the TCA cycle to generate NAD(P)H for reduction of N2 However, direct reduction of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance oxidation of plant-derived dicarboxylates in the TCA cycle with lipid synthesis. Pea bacteroids channel acetyl-CoA into both lipid and the lipid-like polymer poly-β-hydroxybutyrate, the latter via a type II PHB synthase. Lipogenesis is likely to be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules.

摘要

未标记

在豆科植物根瘤内,根瘤菌分化为类菌体,这些类菌体氧化宿主衍生的二羧酸,据推测这是通过三羧酸(TCA)循环发生的,以生成用于还原N2的NAD(P)H。对实验室培养的豌豆根瘤菌进行的代谢通量分析表明,来自[(13)C]琥珀酸的通量与以TCA循环中间产物作为唯一碳源生长的专性需氧菌的呼吸作用一致。然而,脆弱的豌豆类菌体的不稳定性阻碍了它们在固氮条件下的稳态标记。因此,采用比较代谢组学分析来比较自由生活的豌豆根瘤菌和豌豆类菌体。虽然TCA循环被证明对最大固氮速率至关重要,但类菌体中丙酮酸(降低了5.5倍)、乙酰辅酶A(乙酰-CoA;降低了50倍)、游离辅酶A(降低了33倍)和柠檬酸(降低了4.5倍)的水平要低得多。豌豆类菌体不是完全氧化乙酰-CoA,而是将其导入脂质和类脂质聚合物聚-β-羟基丁酸酯(PHB)中,后者通过仅在类菌体中具有活性的III型PHB合酶实现。脂肪生成可能是所有豆科植物根瘤中向N2供电子的氧化还原平衡的基本要求。通过NAD(P)H直接还原诸如铁氧化还原蛋白等可能的固氮酶电子供体,与其氧化还原电位不一致。相反,类菌体必须平衡TCA循环中乙酰-CoA氧化产生的NAD(P)H的生成与其在PHB和脂质中的储存。

重要性

豆科植物根瘤中的共生细菌(根瘤菌)进行的生物固氮是一个耗能过程。在豆科植物根瘤内,根瘤菌分化为类菌体,这些类菌体氧化宿主衍生的二羧酸,据推测这是通过TCA循环发生的,以生成用于还原N2的NAD(P)H。然而,通过NAD(P)H直接还原诸如铁氧化还原蛋白等可能的固氮酶电子供体,与其氧化还原电位不一致。相反,类菌体必须平衡TCA循环中植物衍生二羧酸的氧化与脂质合成。豌豆类菌体将乙酰-CoA导入脂质和类脂质聚合物聚-β-羟基丁酸酯中,后者通过II型PHB合酶实现。脂肪生成可能是所有豆科植物根瘤中向N2供电子的氧化还原平衡的基本要求。

相似文献

1
Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids.
J Bacteriol. 2016 Sep 22;198(20):2864-75. doi: 10.1128/JB.00451-16. Print 2016 Oct 15.
2
Pyruvate is synthesized by two pathways in pea bacteroids with different efficiencies for nitrogen fixation.
J Bacteriol. 2010 Oct;192(19):4944-53. doi: 10.1128/JB.00294-10. Epub 2010 Jul 30.
3
Transcriptomic analysis of Rhizobium leguminosarum bacteroids in determinate and indeterminate nodules.
Microb Genom. 2019 Feb;5(2). doi: 10.1099/mgen.0.000254. Epub 2019 Feb 19.
4
Proteome Analysis Reveals a Significant Host-Specific Response in Rhizobium leguminosarum bv. viciae Endosymbiotic Cells.
Mol Cell Proteomics. 2021;20:100009. doi: 10.1074/mcp.RA120.002276. Epub 2020 Dec 6.
9
Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis.
Nature. 2003 Apr 17;422(6933):722-6. doi: 10.1038/nature01527.
10
Role of polyhydroxybutyrate and glycogen as carbon storage compounds in pea and bean bacteroids.
Mol Plant Microbe Interact. 2005 Jan;18(1):67-74. doi: 10.1094/MPMI-18-0067.

引用本文的文献

1
The role of microbial interactions on rhizobial fitness.
Front Plant Sci. 2023 Oct 9;14:1277262. doi: 10.3389/fpls.2023.1277262. eCollection 2023.
3
Mechanisms for Generating Low Potential Electrons across the Metabolic Diversity of Nitrogen-Fixing Bacteria.
Appl Environ Microbiol. 2023 May 31;89(5):e0037823. doi: 10.1128/aem.00378-23. Epub 2023 May 8.
5
Metabolic Profiling of Resistant and Susceptible Tobaccos Response Incited by Causing Bacterial Wilt.
Front Plant Sci. 2022 Jan 7;12:780429. doi: 10.3389/fpls.2021.780429. eCollection 2021.
7
Metabolic control of nitrogen fixation in rhizobium-legume symbioses.
Sci Adv. 2021 Jul 30;7(31). doi: 10.1126/sciadv.abh2433. Print 2021 Jul.
8
Redox Regulation in Diazotrophic Bacteria in Interaction with Plants.
Antioxidants (Basel). 2021 May 30;10(6):880. doi: 10.3390/antiox10060880.
9
How Rhizobia Adapt to the Nodule Environment.
J Bacteriol. 2021 May 20;203(12):e0053920. doi: 10.1128/JB.00539-20. Epub 2021 Feb 1.
10
Evolutionary Relationships Between Low Potential Ferredoxin and Flavodoxin Electron Carriers.
Front Energy Res. 2019;7. doi: 10.3389/fenrg.2019.00079. Epub 2019 Aug 23.

本文引用的文献

2
Analysis of two polyhydroxyalkanoate synthases in Bradyrhizobium japonicum USDA 110.
J Bacteriol. 2013 Jul;195(14):3145-55. doi: 10.1128/JB.02203-12. Epub 2013 May 10.
3
An electron-bifurcating caffeyl-CoA reductase.
J Biol Chem. 2013 Apr 19;288(16):11304-11. doi: 10.1074/jbc.M112.444919. Epub 2013 Mar 11.
4
Transport and metabolism in legume-rhizobia symbioses.
Annu Rev Plant Biol. 2013;64:781-805. doi: 10.1146/annurev-arplant-050312-120235. Epub 2013 Mar 1.
6
Biological nitrogen fixation in the context of global change.
Mol Plant Microbe Interact. 2013 May;26(5):486-94. doi: 10.1094/MPMI-12-12-0293-CR.
7
Caffeate respiration in the acetogenic bacterium Acetobacterium woodii: a coenzyme A loop saves energy for caffeate activation.
Appl Environ Microbiol. 2013 Mar;79(6):1942-7. doi: 10.1128/AEM.03604-12. Epub 2013 Jan 11.
9
What determines the efficiency of N(2)-fixing Rhizobium-legume symbioses?
Adv Microb Physiol. 2012;60:325-89. doi: 10.1016/B978-0-12-398264-3.00005-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验