Suppr超能文献

天然产物作为 DNA 甲基转移酶抑制剂:一种计算机辅助发现方法。

Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach.

机构信息

Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA.

出版信息

Mol Divers. 2011 May;15(2):293-304. doi: 10.1007/s11030-010-9262-5. Epub 2010 Aug 10.

Abstract

DNA methyltransferases (DNMTs) represent promising targets for the development of unique anticancer drugs. However, all DNMT inhibitors currently in clinical use are nonselective cytosine analogs with significant cytotoxic side-effects. Several natural products, covering diverse chemical classes, have indicated DNMT inhibitory activity, but these effects have yet to be systematically evaluated. In this study, we provide experimental data suggesting that two of the most prominent natural products associated with DNA methylation inhibition, (-)-epigallocathechin-3-gallate (EGCG) and curcumin, have little or no pharmacologically relevant inhibitory activity. We therefore conducted a virtual screen of a large database of natural products with a validated homology model of the catalytic domain of DNMT1. The virtual screening focused on a lead-like subset of the natural products docked with DNMT1, using three docking programs, following a multistep docking approach. Prior to docking, the lead-like subset was characterized in terms of chemical space coverage and scaffold content. Consensus hits with high predicted docking affinity for DNMT1 by all three docking programs were identified. One hit showed DNMT1 inhibitory activity in a previous study. The virtual screening hits were located within the biological-relevant chemical space of drugs, and represent potential unique DNMT inhibitors of natural origin. Validation of these virtual screening hits is warranted.

摘要

DNA 甲基转移酶(DNMTs)是开发独特抗癌药物的有前途的靶点。然而,目前所有临床使用的 DNMT 抑制剂都是具有显著细胞毒性副作用的非选择性胞嘧啶类似物。许多天然产物涵盖了多种化学类别,表明具有 DNMT 抑制活性,但这些作用尚未得到系统评估。在这项研究中,我们提供了实验数据表明,与 DNA 甲基化抑制最相关的两种最突出的天然产物,(-)-表没食子儿茶素-3-没食子酸酯(EGCG)和姜黄素,几乎没有或没有药理相关的抑制活性。因此,我们使用经过验证的 DNMT1 催化结构域同源模型,对天然产物的大型数据库进行了虚拟筛选。虚拟筛选侧重于与 DNMT1 对接的天然产物的类药性子集,使用三个对接程序,采用多步对接方法。在对接之前,根据化学空间覆盖和支架含量对类药性子集进行了表征。所有三个对接程序都预测对 DNMT1 具有高结合亲和力的共识命中物被识别出来。一个命中物在之前的研究中显示出对 DNMT1 的抑制活性。虚拟筛选命中物位于药物的生物学相关化学空间内,代表具有潜在独特的天然来源的 DNMT 抑制剂。有必要验证这些虚拟筛选命中物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验