Isotope Sciences Program, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, USA.
Health Phys. 2010 Sep;99(3):357-62. doi: 10.1097/HP.0b013e3181bfa16b.
From the early 1970's to the late 1980's, Pacific Northwest National Laboratory conducted life-span studies in beagle dogs on the biological effects of inhaled plutonium ((238)PuO(2), (239)PuO(2), and PuNO(3)) to help predict risks associated with accidental intakes in workers. Years later, the purpose of the present follow-up study was to reassess the dose-response relationship for lung cancer in the PuO(2) dogs compared to controls-with particular focus on the dose-response at relatively low lung doses. A PuO(2) aerosol (2.3 mum activity-median aerodynamic diameter, 1.9 mum geometric standard deviation) was administered to six groups of 20 young (18-mo-old) beagle dogs (10 males and 10 females) by inhalation at six different activity levels, as previously described in Laboratory reports. Control dogs were sham-exposed. In dose level 1, initial pulmonary lung depositions were 130 + or - 48 Bq (3.5 + or - 1.3 nCi), corresponding to 1 Bq g lung tissue (0.029 + or - 0.001 nCi g(-1)). Groups 2 through 6 received initial lung depositions (mean values) of 760, 2,724, 10,345, 37,900, and 200,000 Bq (22, 79, 300, 1,100, and 5,800 nCi) PuO(2), respectively. For each dog, the absorbed dose to lungs was calculated from the initial lung burden and the final lung burden at time of death and lung mass, assuming a single, long-term retention function. Insoluble plutonium oxide exhibited long retention times in the lungs. Increased dose-dependent mortality due to lung cancer (bronchiolar-alveolar carcinoma, adenocarcinoma, and epidermoid carcinoma) and radiation pneumonitis (in the highest exposure group) were observed in dogs exposed to PuO(2). Calculated lung doses ranged from a few cGy (lowest exposure level) to 7,764 cGy in dogs that experienced early deaths from radiation pneumonitis. Data were regrouped by lifetime lung dose and plotted as a function of lung tumor incidence. The lung tumor incidence in controls and zero-dose exposed dogs was 18% (5/28). However, no lung tumors were observed in 16 dogs with the lowest lung doses (8 to 22 cGy, mean 14.4 + or - 7.6 cGy), and only one lung tumor was observed in the next 10 dogs with lung doses ranging from 27 to 48 cGy (mean 37.5 + or - 10.9 cGy). By least-squares analysis, a pure-quadratic function represented the overall dose-response (n = 137, r = 0.96) with no apparent dose-related threshold. Reducing this function to three linear dose-response components, we calculated risk coefficients for each. However, the incidence of lung tumors at zero dose was significantly greater than the incidence at low dose (at the p < or = 0.053 confidence level), suggesting a protective effect (radiation homeostasis) of alpha-particle radiation from PuO(2). If a threshold for lung cancer incidence exists, it will be observed in the range 15 to 40 cGy.
从 20 世纪 70 年代初到 80 年代末,太平洋西北国家实验室(Pacific Northwest National Laboratory)在比格犬身上进行了寿命期研究,以研究吸入钚((238)PuO(2)、(239)PuO(2)和 PuNO(3))对生物体的影响,目的是帮助预测与工人意外摄入相关的风险。多年后,本后续研究的目的是重新评估 PuO(2)狗的肺癌剂量-反应关系与对照组相比——特别关注相对较低的肺剂量的剂量-反应关系。以前的实验室报告中描述了一种 PuO(2)气溶胶(2.3 µm 活性-中值空气动力学直径,1.9 µm 几何标准偏差),通过吸入方式以六种不同的活性水平分别施用于六组 20 只年轻(18 个月大)比格犬(10 只雄性和 10 只雌性)。对照犬进行假暴露。在剂量水平 1 中,初始肺沉积量为 130 ± 48 Bq(3.5 ± 1.3 nCi),相当于肺组织 1 Bq g(0.029 ± 0.001 nCi g(-1))。第 2 至 6 组接受的初始肺沉积量(平均值)分别为 760、2724、10345、37900 和 200000 Bq(22、79、300、1100 和 5800 nCi)PuO(2)。对于每只狗,根据初始肺负荷和死亡时的最终肺负荷以及肺质量计算肺部吸收剂量,假设存在单一的长期保留功能。不溶性钚氧化物在肺部具有长期保留时间。在暴露于 PuO(2)的狗中,观察到因肺癌(细支气管肺泡癌、腺癌和表皮样癌)和放射性肺炎(在最高暴露组)导致的剂量依赖性死亡率增加。在经历放射性肺炎早期死亡的狗中,计算出的肺剂量范围从几 cGy(最低暴露水平)到 7764 cGy。数据按终生肺剂量分组,并作为肺肿瘤发生率的函数进行绘制。对照组和零剂量暴露组的肺肿瘤发生率为 18%(28 只中的 5 只)。然而,在肺剂量最低的 16 只狗(8 至 22 cGy,平均值 14.4 ± 7.6 cGy)中未观察到肺肿瘤,而在肺剂量为 27 至 48 cGy(平均值 37.5 ± 10.9 cGy)的下 10 只狗中仅观察到一个肺肿瘤。通过最小二乘分析,整体剂量-反应(n = 137,r = 0.96)呈纯二次函数形式,没有明显的剂量相关阈值。将该函数简化为三个线性剂量反应成分,我们为每个成分计算了风险系数。然而,零剂量时肺肿瘤的发生率明显高于低剂量时(置信水平 p≤0.053),这表明 PuO(2)的α粒子辐射具有保护作用(辐射动态平衡)。如果肺癌发生率存在阈值,那么在 15 至 40 cGy 的范围内可以观察到。