School of Electronics, Information and Electrical Engineering, Shanghai JiaoTong University, Shanghai, People's Republic of China.
J Med Syst. 2011 Dec;35(6):1477-84. doi: 10.1007/s10916-009-9424-0. Epub 2010 Jan 13.
Wireless Capsule Endoscopy (WCE), which allows clinicians to inspect the whole gastrointestinal tract (GI) noninvasively, has bloomed into one of the most efficient technologies to diagnose the bleeding in GI tract. However WCE generates large amount of images in one examination of a patient. It is hard for clinicians to leave continuous time to examine the full WCE images, and this is the main factor limiting the wider application of WCE in clinic. A novel intelligent bleeding detection based on Probabilistic Neural Network (PNN) is proposed in this paper. The features of bleeding region in WCE images distinguishing from non-bleeding region are extracted. A PNN classifier is built to recognize bleeding regions in WCE images. Finally the intelligent bleeding detection method is implemented through programming. The experiments show this method can correctly recognize the bleeding regions in WCE images and clearly mark them out. The sensitivity and specificity on image level are measured as 93.1% and 85.6% respectively.
无线胶囊内镜(WCE)允许临床医生无创地检查整个胃肠道(GI),已成为诊断胃肠道出血最有效的技术之一。然而,WCE 在对患者进行一次检查时会产生大量图像。临床医生很难留出连续的时间来检查全部 WCE 图像,这是限制 WCE 在临床上更广泛应用的主要因素。本文提出了一种基于概率神经网络(PNN)的新型智能出血检测方法。提取了 WCE 图像中出血区域与非出血区域的特征。建立了一个 PNN 分类器来识别 WCE 图像中的出血区域。最后通过编程实现了智能出血检测方法。实验表明,该方法能够正确识别 WCE 图像中的出血区域,并清晰地标出它们。在图像级别上的灵敏度和特异性分别为 93.1%和 85.6%。